Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demmlp2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%DEMMLP2 Demonstrate simple classification using a multi-layer perceptron % % Description % The problem consists of input data in two dimensions drawn from a % mixture of three Gaussians: two of which are assigned to a single % class. An MLP with logistic outputs trained with a quasi-Newton % optimisation algorithm is compared with the optimal Bayesian decision % rule. % % See also % MLP, MLPFWD, NETERR, QUASINEW % % Copyright (c) Ian T Nabney (1996-2001) % Set up some figure parameters AxisShift = 0.05; ClassSymbol1 = 'r.'; ClassSymbol2 = 'y.'; PointSize = 12; titleSize = 10; % Fix the seeds rand('state', 423); randn('state', 423); clc disp('This demonstration shows how an MLP with logistic outputs and') disp('and cross entropy error function can be trained to model the') disp('posterior class probabilities in a classification problem.') disp('The results are compared with the optimal Bayes rule classifier,') disp('which can be computed exactly as we know the form of the generating') disp('distribution.') disp(' ') disp('Press any key to continue.') pause fh1 = figure; set(fh1, 'Name', 'True Data Distribution'); whitebg(fh1, 'k'); % % Generate the data % n=200; % Set up mixture model: 2d data with three centres % Class 1 is first centre, class 2 from the other two mix = gmm(2, 3, 'full'); mix.priors = [0.5 0.25 0.25]; mix.centres = [0 -0.1; 1 1; 1 -1]; mix.covars(:,:,1) = [0.625 -0.2165; -0.2165 0.875]; mix.covars(:,:,2) = [0.2241 -0.1368; -0.1368 0.9759]; mix.covars(:,:,3) = [0.2375 0.1516; 0.1516 0.4125]; [data, label] = gmmsamp(mix, n); % % Calculate some useful axis limits % x0 = min(data(:,1)); x1 = max(data(:,1)); y0 = min(data(:,2)); y1 = max(data(:,2)); dx = x1-x0; dy = y1-y0; expand = 5/100; % Add on 5 percent each way x0 = x0 - dx*expand; x1 = x1 + dx*expand; y0 = y0 - dy*expand; y1 = y1 + dy*expand; resolution = 100; step = dx/resolution; xrange = [x0:step:x1]; yrange = [y0:step:y1]; % % Generate the grid % [X Y]=meshgrid([x0:step:x1],[y0:step:y1]); % % Calculate the class conditional densities, the unconditional densities and % the posterior probabilities % px_j = gmmactiv(mix, [X(:) Y(:)]); px = reshape(px_j*(mix.priors)',size(X)); post = gmmpost(mix, [X(:) Y(:)]); p1_x = reshape(post(:, 1), size(X)); p2_x = reshape(post(:, 2) + post(:, 3), size(X)); % % Generate some pretty pictures !! % colormap(hot) colorbar subplot(1,2,1) hold on plot(data((label==1),1),data(label==1,2),ClassSymbol1, 'MarkerSize', PointSize) plot(data((label>1),1),data(label>1,2),ClassSymbol2, 'MarkerSize', PointSize) contour(xrange,yrange,p1_x,[0.5 0.5],'w-'); axis([x0 x1 y0 y1]) set(gca,'Box','On') title('The Sampled Data'); rect=get(gca,'Position'); rect(1)=rect(1)-AxisShift; rect(3)=rect(3)+AxisShift; set(gca,'Position',rect) hold off subplot(1,2,2) imagesc(X(:),Y(:),px); hold on [cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'w:'); set(hB,'LineWidth', 2); axis([x0 x1 y0 y1]) set(gca,'YDir','normal') title('Probability Density p(x)') hold off drawnow; clc; disp('The first figure shows the data sampled from a mixture of three') disp('Gaussians, the first of which (whose centre is near the origin) is') disp('labelled red and the other two are labelled yellow. The second plot') disp('shows the unconditional density of the data with the optimal Bayesian') disp('decision boundary superimposed.') disp(' ') disp('Press any key to continue.') pause fh2 = figure; set(fh2, 'Name', 'Class-conditional Densities and Posterior Probabilities'); whitebg(fh2, 'w'); subplot(2,2,1) p1=reshape(px_j(:,1),size(X)); imagesc(X(:),Y(:),p1); colormap hot colorbar axis(axis) set(gca,'YDir','normal') hold on plot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2) title('Density p(x|red)') hold off subplot(2,2,2) p2=reshape((px_j(:,2)+px_j(:,3)),size(X)); imagesc(X(:),Y(:),p2); colorbar set(gca,'YDir','normal') hold on plot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2) title('Density p(x|yellow)') hold off subplot(2,2,3) imagesc(X(:),Y(:),p1_x); set(gca,'YDir','normal') colorbar title('Posterior Probability p(red|x)') hold on plot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2) hold off subplot(2,2,4) imagesc(X(:),Y(:),p2_x); set(gca,'YDir','normal') colorbar title('Posterior Probability p(yellow|x)') hold on plot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2) hold off % Now set up and train the MLP nhidden=6; nout=1; alpha = 0.2; % Weight decay ncycles = 60; % Number of training cycles. % Set up MLP network net = mlp(2, nhidden, nout, 'logistic', alpha); options = zeros(1,18); options(1) = 1; % Print out error values options(14) = ncycles; mlpstring = ['We now set up an MLP with ', num2str(nhidden), ... ' hidden units, logistic output and cross']; trainstring = ['entropy error function, and train it for ', ... num2str(ncycles), ' cycles using the']; wdstring = ['quasi-Newton optimisation algorithm with weight decay of ', ... num2str(alpha), '.']; % Force out the figure before training the MLP drawnow; disp(' ') disp('The second figure shows the class conditional densities and posterior') disp('probabilities for each class. The blue crosses mark the centres of') disp('the three Gaussians.') disp(' ') disp(mlpstring) disp(trainstring) disp(wdstring) disp(' ') disp('Press any key to continue.') pause % Convert targets to 0-1 encoding target=[label==1]; % Train using quasi-Newton. [net] = netopt(net, options, data, target, 'quasinew'); y = mlpfwd(net, data); yg = mlpfwd(net, [X(:) Y(:)]); yg = reshape(yg(:,1),size(X)); fh3 = figure; set(fh3, 'Name', 'Network Output'); whitebg(fh3, 'k') subplot(1, 2, 1) hold on plot(data((label==1),1),data(label==1,2),'r.', 'MarkerSize', PointSize) plot(data((label>1),1),data(label>1,2),'y.', 'MarkerSize', PointSize) % Bayesian decision boundary [cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'b-'); [cN, hN] = contour(xrange,yrange,yg,[0.5 0.5],'r-'); set(hB, 'LineWidth', 2); set(hN, 'LineWidth', 2); Chandles = [hB(1) hN(1)]; legend(Chandles, 'Bayes', ... 'Network', 3); axis([x0 x1 y0 y1]) set(gca,'Box','on','XTick',[],'YTick',[]) title('Training Data','FontSize',titleSize); hold off subplot(1, 2, 2) imagesc(X(:),Y(:),yg); colormap hot colorbar axis(axis) set(gca,'YDir','normal','XTick',[],'YTick',[]) title('Network Output','FontSize',titleSize) clc disp('This figure shows the training data with the decision boundary') disp('produced by the trained network and the network''s prediction of') disp('the posterior probability of the red class.') disp(' ') disp('Press any key to continue.') pause % % Now generate and classify a test data set % [testdata testlabel] = gmmsamp(mix, n); testlab=[testlabel==1 testlabel>1]; % This is the Bayesian classification tpx_j = gmmpost(mix, testdata); Bpost = [tpx_j(:,1), tpx_j(:,2)+tpx_j(:,3)]; [Bcon Brate]=confmat(Bpost, [testlabel==1 testlabel>1]); % Compute network classification yt = mlpfwd(net, testdata); % Convert single output to posteriors for both classes testpost = [yt 1-yt]; [C trate]=confmat(testpost,[testlabel==1 testlabel>1]); fh4 = figure; set(fh4, 'Name', 'Decision Boundaries'); whitebg(fh4, 'k'); hold on plot(testdata((testlabel==1),1),testdata((testlabel==1),2),... ClassSymbol1, 'MarkerSize', PointSize) plot(testdata((testlabel>1),1),testdata((testlabel>1),2),... ClassSymbol2, 'MarkerSize', PointSize) % Bayesian decision boundary [cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'b-'); set(hB, 'LineWidth', 2); % Network decision boundary [cN, hN] = contour(xrange,yrange,yg,[0.5 0.5],'r-'); set(hN, 'LineWidth', 2); Chandles = [hB(1) hN(1)]; legend(Chandles, 'Bayes decision boundary', ... 'Network decision boundary', -1); axis([x0 x1 y0 y1]) title('Test Data') set(gca,'Box','On','Xtick',[],'YTick',[]) clc disp('This figure shows the test data with the decision boundary') disp('produced by the trained network and the optimal Bayes rule.') disp(' ') disp('Press any key to continue.') pause fh5 = figure; set(fh5, 'Name', 'Test Set Performance'); whitebg(fh5, 'w'); % Bayes rule performance subplot(1,2,1) plotmat(Bcon,'b','k',12) set(gca,'XTick',[0.5 1.5]) set(gca,'YTick',[0.5 1.5]) grid('off') set(gca,'XTickLabel',['Red ' ; 'Yellow']) set(gca,'YTickLabel',['Yellow' ; 'Red ']) ylabel('True') xlabel('Predicted') title(['Bayes Confusion Matrix (' num2str(Brate(1)) '%)']) % Network performance subplot(1,2, 2) plotmat(C,'b','k',12) set(gca,'XTick',[0.5 1.5]) set(gca,'YTick',[0.5 1.5]) grid('off') set(gca,'XTickLabel',['Red ' ; 'Yellow']) set(gca,'YTickLabel',['Yellow' ; 'Red ']) ylabel('True') xlabel('Predicted') title(['Network Confusion Matrix (' num2str(trate(1)) '%)']) disp('The final figure shows the confusion matrices for the') disp('two rules on the test set.') disp(' ') disp('Press any key to exit.') pause whitebg(fh1, 'w'); whitebg(fh2, 'w'); whitebg(fh3, 'w'); whitebg(fh4, 'w'); whitebg(fh5, 'w'); close(fh1); close(fh2); close(fh3); close(fh4); close(fh5); clear all;