Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demkmn1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%DEMKMEAN Demonstrate simple clustering model trained with K-means. % % Description % The problem consists of data in a two-dimensional space. The data is % drawn from three spherical Gaussian distributions with priors 0.3, % 0.5 and 0.2; centres (2, 3.5), (0, 0) and (0,2); and standard % deviations 0.2, 0.5 and 1.0. The first figure contains a scatter plot % of the data. The data is the same as in DEMGMM1. % % A cluster model with three components is trained using the batch K- % means algorithm. The matrix of centres is printed after training. The % second figure shows the data labelled with a colour derived from the % corresponding cluster % % See also % DEM2DDAT, DEMGMM1, KNN1, KMEANS % % Copyright (c) Ian T Nabney (1996-2001) % Generate the data, fixing seeds for reproducible results ndata = 250; randn('state', 42); rand('state', 42); data = dem2ddat(ndata); % Randomise data order data = data(randperm(ndata),:); clc disp('This demonstration illustrates the use of a cluster model to') disp('find centres that reflect the distribution of data points.') disp('We begin by generating the data from a mixture of three Gaussians') disp('in two-dimensional space and plotting it.') disp(' ') disp('Press any key to continue.') pause fh1 = figure; plot(data(:, 1), data(:, 2), 'o') set(gca, 'Box', 'on') title('Data') % Set up cluster model ncentres = 3; centres = zeros(ncentres, 2); % Set up vector of options for kmeans trainer options = foptions; options(1) = 1; % Prints out error values. options(5) = 1; options(14) = 10; % Number of iterations. clc disp('The model is chosen to have three centres, which are initialised') disp('at randomly selected data points. We now train the model using') disp('the batch K-means algorithm with a maximum of 10 iterations and') disp('stopping tolerance of 1e-4.') disp(' ') disp('Press any key to continue.') pause % Train the centres from the data [centres, options, post] = kmeans(centres, data, options); % Print out model disp(' ') disp('Note that training has terminated before 10 iterations as there') disp('has been no change in the centres or error function.') disp(' ') disp('The trained model has centres:') disp(centres); disp('Press any key to continue.') pause clc disp('We now plot each data point coloured according to its classification') disp('given by the nearest cluster centre. The cluster centres are denoted') disp('by black crosses.') % Plot the result fh2 = figure; hold on colours = ['b.'; 'r.'; 'g.']; [tempi, tempj] = find(post); hold on for i = 1:3 % Select data points closest to ith centre thisX = data(tempi(tempj == i), 1); thisY = data(tempi(tempj == i), 2); hp(i) = plot(thisX, thisY, colours(i,:)); set(hp(i), 'MarkerSize', 12); end set(gca, 'Box', 'on') legend('Class 1', 'Class 2', 'Class 3', 2) hold on plot(centres(:, 1), centres(:,2), 'k+', 'LineWidth', 2, ... 'MarkerSize', 8) title('Centres and data labels') hold off disp(' ') disp('Press any key to end.') pause close(fh1); close(fh2); clear all;