Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/Contents.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Netlab Toolbox % Version 3.3.1 18-Jun-2004 % % conffig - Display a confusion matrix. % confmat - Compute a confusion matrix. % conjgrad - Conjugate gradients optimization. % consist - Check that arguments are consistent. % convertoldnet- Convert pre-2.3 release MLP and MDN nets to new format % datread - Read data from an ascii file. % datwrite - Write data to ascii file. % dem2ddat - Generates two dimensional data for demos. % demard - Automatic relevance determination using the MLP. % demev1 - Demonstrate Bayesian regression for the MLP. % demev2 - Demonstrate Bayesian classification for the MLP. % demev3 - Demonstrate Bayesian regression for the RBF. % demgauss - Demonstrate sampling from Gaussian distributions. % demglm1 - Demonstrate simple classification using a generalized linear model. % demglm2 - Demonstrate simple classification using a generalized linear model. % demgmm1 - Demonstrate density modelling with a Gaussian mixture model. % demgmm3 - Demonstrate density modelling with a Gaussian mixture model. % demgmm4 - Demonstrate density modelling with a Gaussian mixture model. % demgmm5 - Demonstrate density modelling with a PPCA mixture model. % demgp - Demonstrate simple regression using a Gaussian Process. % demgpard - Demonstrate ARD using a Gaussian Process. % demgpot - Computes the gradient of the negative log likelihood for a mixture model. % demgtm1 - Demonstrate EM for GTM. % demgtm2 - Demonstrate GTM for visualisation. % demhint - Demonstration of Hinton diagram for 2-layer feed-forward network. % demhmc1 - Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians. % demhmc2 - Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. % demhmc3 - Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. % demkmean - Demonstrate simple clustering model trained with K-means. % demknn1 - Demonstrate nearest neighbour classifier. % demmdn1 - Demonstrate fitting a multi-valued function using a Mixture Density Network. % demmet1 - Demonstrate Markov Chain Monte Carlo sampling on a Gaussian. % demmlp1 - Demonstrate simple regression using a multi-layer perceptron % demmlp2 - Demonstrate simple classification using a multi-layer perceptron % demnlab - A front-end Graphical User Interface to the demos % demns1 - Demonstrate Neuroscale for visualisation. % demolgd1 - Demonstrate simple MLP optimisation with on-line gradient descent % demopt1 - Demonstrate different optimisers on Rosenbrock's function. % dempot - Computes the negative log likelihood for a mixture model. % demprgp - Demonstrate sampling from a Gaussian Process prior. % demprior - Demonstrate sampling from a multi-parameter Gaussian prior. % demrbf1 - Demonstrate simple regression using a radial basis function network. % demsom1 - Demonstrate SOM for visualisation. % demtrain - Demonstrate training of MLP network. % dist2 - Calculates squared distance between two sets of points. % eigdec - Sorted eigendecomposition % errbayes - Evaluate Bayesian error function for network. % evidence - Re-estimate hyperparameters using evidence approximation. % fevbayes - Evaluate Bayesian regularisation for network forward propagation. % gauss - Evaluate a Gaussian distribution. % gbayes - Evaluate gradient of Bayesian error function for network. % glm - Create a generalized linear model. % glmderiv - Evaluate derivatives of GLM outputs with respect to weights. % glmerr - Evaluate error function for generalized linear model. % glmevfwd - Forward propagation with evidence for GLM % glmfwd - Forward propagation through generalized linear model. % glmgrad - Evaluate gradient of error function for generalized linear model. % glmhess - Evaluate the Hessian matrix for a generalised linear model. % glminit - Initialise the weights in a generalized linear model. % glmpak - Combines weights and biases into one weights vector. % glmtrain - Specialised training of generalized linear model % glmunpak - Separates weights vector into weight and bias matrices. % gmm - Creates a Gaussian mixture model with specified architecture. % gmmactiv - Computes the activations of a Gaussian mixture model. % gmmem - EM algorithm for Gaussian mixture model. % gmminit - Initialises Gaussian mixture model from data % gmmpak - Combines all the parameters in a Gaussian mixture model into one vector. % gmmpost - Computes the class posterior probabilities of a Gaussian mixture model. % gmmprob - Computes the data probability for a Gaussian mixture model. % gmmsamp - Sample from a Gaussian mixture distribution. % gmmunpak - Separates a vector of Gaussian mixture model parameters into its components. % gp - Create a Gaussian Process. % gpcovar - Calculate the covariance for a Gaussian Process. % gpcovarf - Calculate the covariance function for a Gaussian Process. % gpcovarp - Calculate the prior covariance for a Gaussian Process. % gperr - Evaluate error function for Gaussian Process. % gpfwd - Forward propagation through Gaussian Process. % gpgrad - Evaluate error gradient for Gaussian Process. % gpinit - Initialise Gaussian Process model. % gppak - Combines GP hyperparameters into one vector. % gpunpak - Separates hyperparameter vector into components. % gradchek - Checks a user-defined gradient function using finite differences. % graddesc - Gradient descent optimization. % gsamp - Sample from a Gaussian distribution. % gtm - Create a Generative Topographic Map. % gtmem - EM algorithm for Generative Topographic Mapping. % gtmfwd - Forward propagation through GTM. % gtminit - Initialise the weights and latent sample in a GTM. % gtmlmean - Mean responsibility for data in a GTM. % gtmlmode - Mode responsibility for data in a GTM. % gtmmag - Magnification factors for a GTM % gtmpost - Latent space responsibility for data in a GTM. % gtmprob - Probability for data under a GTM. % hbayes - Evaluate Hessian of Bayesian error function for network. % hesschek - Use central differences to confirm correct evaluation of Hessian matrix. % hintmat - Evaluates the coordinates of the patches for a Hinton diagram. % hinton - Plot Hinton diagram for a weight matrix. % histp - Histogram estimate of 1-dimensional probability distribution. % hmc - Hybrid Monte Carlo sampling. % kmeans - Trains a k means cluster model. % knn - Creates a K-nearest-neighbour classifier. % knnfwd - Forward propagation through a K-nearest-neighbour classifier. % linef - Calculate function value along a line. % linemin - One dimensional minimization. % maxitmess- Create a standard error message when training reaches max. iterations. % mdn - Creates a Mixture Density Network with specified architecture. % mdn2gmm - Converts an MDN mixture data structure to array of GMMs. % mdndist2 - Calculates squared distance between centres of Gaussian kernels and data % mdnerr - Evaluate error function for Mixture Density Network. % mdnfwd - Forward propagation through Mixture Density Network. % mdngrad - Evaluate gradient of error function for Mixture Density Network. % mdninit - Initialise the weights in a Mixture Density Network. % mdnpak - Combines weights and biases into one weights vector. % mdnpost - Computes the posterior probability for each MDN mixture component. % mdnprob - Computes the data probability likelihood for an MDN mixture structure. % mdnunpak - Separates weights vector into weight and bias matrices. % metrop - Markov Chain Monte Carlo sampling with Metropolis algorithm. % minbrack - Bracket a minimum of a function of one variable. % mlp - Create a 2-layer feedforward network. % mlpbkp - Backpropagate gradient of error function for 2-layer network. % mlpderiv - Evaluate derivatives of network outputs with respect to weights. % mlperr - Evaluate error function for 2-layer network. % mlpevfwd - Forward propagation with evidence for MLP % mlpfwd - Forward propagation through 2-layer network. % mlpgrad - Evaluate gradient of error function for 2-layer network. % mlphdotv - Evaluate the product of the data Hessian with a vector. % mlphess - Evaluate the Hessian matrix for a multi-layer perceptron network. % mlphint - Plot Hinton diagram for 2-layer feed-forward network. % mlpinit - Initialise the weights in a 2-layer feedforward network. % mlppak - Combines weights and biases into one weights vector. % mlpprior - Create Gaussian prior for mlp. % mlptrain - Utility to train an MLP network for demtrain % mlpunpak - Separates weights vector into weight and bias matrices. % netderiv - Evaluate derivatives of network outputs by weights generically. % neterr - Evaluate network error function for generic optimizers % netevfwd - Generic forward propagation with evidence for network % netgrad - Evaluate network error gradient for generic optimizers % nethess - Evaluate network Hessian % netinit - Initialise the weights in a network. % netopt - Optimize the weights in a network model. % netpak - Combines weights and biases into one weights vector. % netunpak - Separates weights vector into weight and bias matrices. % olgd - On-line gradient descent optimization. % pca - Principal Components Analysis % plotmat - Display a matrix. % ppca - Probabilistic Principal Components Analysis % quasinew - Quasi-Newton optimization. % rbf - Creates an RBF network with specified architecture % rbfbkp - Backpropagate gradient of error function for RBF network. % rbfderiv - Evaluate derivatives of RBF network outputs with respect to weights. % rbferr - Evaluate error function for RBF network. % rbfevfwd - Forward propagation with evidence for RBF % rbffwd - Forward propagation through RBF network with linear outputs. % rbfgrad - Evaluate gradient of error function for RBF network. % rbfhess - Evaluate the Hessian matrix for RBF network. % rbfjacob - Evaluate derivatives of RBF network outputs with respect to inputs. % rbfpak - Combines all the parameters in an RBF network into one weights vector. % rbfprior - Create Gaussian prior and output layer mask for RBF. % rbfsetbf - Set basis functions of RBF from data. % rbfsetfw - Set basis function widths of RBF. % rbftrain - Two stage training of RBF network. % rbfunpak - Separates a vector of RBF weights into its components. % rosegrad - Calculate gradient of Rosenbrock's function. % rosen - Calculate Rosenbrock's function. % scg - Scaled conjugate gradient optimization. % som - Creates a Self-Organising Map. % somfwd - Forward propagation through a Self-Organising Map. % sompak - Combines node weights into one weights matrix. % somtrain - Kohonen training algorithm for SOM. % somunpak - Replaces node weights in SOM. % % Copyright (c) Ian T Nabney (1996-2001) %