Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/mlphess.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual mlphess </title> </head> <body> <H1> mlphess </H1> <h2> Purpose </h2> Evaluate the Hessian matrix for a multi-layer perceptron network. <p><h2> Synopsis </h2> <PRE> h = mlphess(net, x, t) [h, hdata] = mlphess(net, x, t) h = mlphess(net, x, t, hdata) </PRE> <p><h2> Description </h2> <CODE>h = mlphess(net, x, t)</CODE> takes an MLP network data structure <CODE>net</CODE>, a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of target values and returns the full Hessian matrix <CODE>h</CODE> corresponding to the second derivatives of the negative log posterior distribution, evaluated for the current weight and bias values as defined by <CODE>net</CODE>. <p><CODE>[h, hdata] = mlphess(net, x, t)</CODE> returns both the Hessian matrix <CODE>h</CODE> and the contribution <CODE>hdata</CODE> arising from the data dependent term in the Hessian. <p><CODE>h = mlphess(net, x, t, hdata)</CODE> takes a network data structure <CODE>net</CODE>, a matrix <CODE>x</CODE> of input values, and a matrix <CODE>t</CODE> of target values, together with the contribution <CODE>hdata</CODE> arising from the data dependent term in the Hessian, and returns the full Hessian matrix <CODE>h</CODE> corresponding to the second derivatives of the negative log posterior distribution. This version saves computation time if <CODE>hdata</CODE> has already been evaluated for the current weight and bias values. <p><h2> Example </h2> For the standard regression framework with a Gaussian conditional distribution of target values given input values, and a simple Gaussian prior over weights, the Hessian takes the form <PRE> h = beta*hd + alpha*I </PRE> where the contribution <CODE>hd</CODE> is evaluated by calls to <CODE>mlphdotv</CODE> and <CODE>h</CODE> is the full Hessian. <p><h2> See Also </h2> <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="hesschek.htm">hesschek</a></CODE>, <CODE><a href="mlphdotv.htm">mlphdotv</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>