Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/mdninit.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual mdninit </title> </head> <body> <H1> mdninit </H1> <h2> Purpose </h2> Initialise the weights in a Mixture Density Network. <p><h2> Synopsis </h2> <PRE> net = mdninit(net, prior) net = mdninit(net, prior, t, options) </PRE> <p><h2> Description </h2> <p><CODE>net = mdninit(net, prior)</CODE> takes a Mixture Density Network <CODE>net</CODE> and sets the weights and biases by sampling from a Gaussian distribution. It calls <CODE>mlpinit</CODE> for the MLP component of <CODE>net</CODE>. <p><CODE>net = mdninit(net, prior, t, options)</CODE> uses the target data <CODE>t</CODE> to initialise the biases for the output units after initialising the other weights as above. It calls <CODE>gmminit</CODE>, with <CODE>t</CODE> and <CODE>options</CODE> as arguments, to obtain a model of the unconditional density of <CODE>t</CODE>. The biases are then set so that <CODE>net</CODE> will output the values in the Gaussian mixture model. <p><h2> See Also </h2> <CODE><a href="mdn.htm">mdn</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlpinit.htm">mlpinit</a></CODE>, <CODE><a href="gmminit.htm">gmminit</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) <p>David J Evans (1998) </body> </html>