view toolboxes/FullBNT-1.0.7/nethelp3.3/mdninit.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line source
<html>
<head>
<title>
Netlab Reference Manual mdninit
</title>
</head>
<body>
<H1> mdninit
</H1>
<h2>
Purpose
</h2>
Initialise the weights in a Mixture Density Network.

<p><h2>
Synopsis
</h2>
<PRE>
net = mdninit(net, prior)
net = mdninit(net, prior, t, options)
</PRE>


<p><h2>
Description
</h2>

<p><CODE>net = mdninit(net, prior)</CODE> takes a Mixture Density Network
<CODE>net</CODE> and sets the weights and biases by sampling from a Gaussian
distribution. It calls <CODE>mlpinit</CODE> for the MLP component of <CODE>net</CODE>.

<p><CODE>net = mdninit(net, prior, t, options)</CODE> uses the target data <CODE>t</CODE> to
initialise the biases for the output units after initialising the 
other weights as above.  It calls <CODE>gmminit</CODE>, with <CODE>t</CODE> and <CODE>options</CODE>
as arguments, to obtain a model of the unconditional density of <CODE>t</CODE>.  The
biases are then set so that <CODE>net</CODE> will output the values in the Gaussian 
mixture model.

<p><h2>
See Also
</h2>
<CODE><a href="mdn.htm">mdn</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlpinit.htm">mlpinit</a></CODE>, <CODE><a href="gmminit.htm">gmminit</a></CODE><hr>
<b>Pages:</b>
<a href="index.htm">Index</a>
<hr>
<p>Copyright (c) Ian T Nabney (1996-9)
<p>David J Evans (1998)

</body>
</html>