Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/linemin.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual linemin </title> </head> <body> <H1> linemin </H1> <h2> Purpose </h2> One dimensional minimization. <p><h2> Description </h2> <CODE>[x, options] = linemin(f, pt, dir, fpt, options)</CODE> uses Brent's algorithm to find the minimum of the function <CODE>f(x)</CODE> along the line <CODE>dir</CODE> through the point <CODE>pt</CODE>. The function value at the starting point is <CODE>fpt</CODE>. The point at which <CODE>f</CODE> has a local minimum is returned as <CODE>x</CODE>. The function value at that point is returned in <CODE>options(8)</CODE>. <p><CODE>linemin(f, pt, dir, fpt, options, p1, p2, ...)</CODE> allows additional arguments to be passed to <CODE>f()</CODE>. <p>The optional parameters have the following interpretations. <p><CODE>options(1)</CODE> is set to 1 to display error values. <p><CODE>options(2)</CODE> is a measure of the absolute precision required for the value of <CODE>x</CODE> at the solution. <p><CODE>options(3)</CODE> is a measure of the precision required of the objective function at the solution. Both this and the previous condition must be satisfied for termination. <p><CODE>options(14)</CODE> is the maximum number of iterations; default 100. <p><h2> Examples </h2> An example of the use of this function to find the minimum of a function <CODE>f</CODE> in the direction <CODE>sd</CODE> can be found in <CODE>conjgrad</CODE> <PRE> x = linemin(f, xold, sd, fold, lineoptions); </PRE> <p><h2> Algorithm </h2> Brent's algorithm uses a mixture of quadratic interpolation and golden section search to find the minimum of a function of a single variable once it has been bracketed (which is done with <CODE>minbrack</CODE>). This is adapted to minimize a function along a line. This implementation is based on that in Numerical Recipes. <p><h2> See Also </h2> <CODE><a href="conjgrad.htm">conjgrad</a></CODE>, <CODE><a href="minbrack.htm">minbrack</a></CODE>, <CODE><a href="quasinew.htm">quasinew</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>