Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/knnfwd.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual knnfwd </title> </head> <body> <H1> knnfwd </H1> <h2> Purpose </h2> Forward propagation through a K-nearest-neighbour classifier. <p><h2> Synopsis </h2> <PRE> [y, l] = knnfwd(net, x) </PRE> <p><h2> Description </h2> <CODE>[y, l] = knnfwd(net, x)</CODE> takes a matrix <CODE>x</CODE> of input vectors (one vector per row) and uses the <CODE>k</CODE>-nearest-neighbour rule on the training data contained in <CODE>net</CODE> to produce a matrix <CODE>y</CODE> of outputs and a matrix <CODE>l</CODE> of classification labels. The nearest neighbours are determined using Euclidean distance. The <CODE>ij</CODE>th entry of <CODE>y</CODE> counts the number of occurrences that an example from class <CODE>j</CODE> is among the <CODE>k</CODE> closest training examples to example <CODE>i</CODE> from <CODE>x</CODE>. The matrix <CODE>l</CODE> contains the predicted class labels as an index 1..N, not as 1-of-N coding. <p><h2> Example </h2> <PRE> net = knn(size(xtrain, 2), size(t_train, 2), 3, xtrain, t_train); y = knnfwd(net, xtest); conffig(y, t_test); </PRE> Creates a 3 nearest neighbour model <CODE>net</CODE> and then applies it to the data <CODE>xtest</CODE>. The results are plotted as a confusion matrix with <CODE>conffig</CODE>. <p><h2> See Also </h2> <CODE><a href="kmeans.htm">kmeans</a></CODE>, <CODE><a href="knn.htm">knn</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>