view toolboxes/FullBNT-1.0.7/nethelp3.3/knnfwd.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line source
<html>
<head>
<title>
Netlab Reference Manual knnfwd
</title>
</head>
<body>
<H1> knnfwd
</H1>
<h2>
Purpose
</h2>
Forward propagation through a K-nearest-neighbour classifier.

<p><h2>
Synopsis
</h2>
<PRE>

[y, l] = knnfwd(net, x)
</PRE>


<p><h2>
Description
</h2>
<CODE>[y, l] = knnfwd(net, x)</CODE> takes a matrix <CODE>x</CODE>
of input vectors (one vector per row) 
 and uses the <CODE>k</CODE>-nearest-neighbour rule on the training data contained
in <CODE>net</CODE> to 
produce 
a matrix <CODE>y</CODE> of outputs and a matrix <CODE>l</CODE> of classification
labels.
The nearest neighbours are determined using Euclidean distance.
The <CODE>ij</CODE>th entry of <CODE>y</CODE> counts the number of occurrences that
an example from class <CODE>j</CODE> is among the <CODE>k</CODE> closest training
examples to example <CODE>i</CODE> from <CODE>x</CODE>.
The matrix <CODE>l</CODE> contains the predicted class labels
as an index 1..N, not as 1-of-N coding.

<p><h2>
Example
</h2>
<PRE>

net = knn(size(xtrain, 2), size(t_train, 2), 3, xtrain, t_train);
y = knnfwd(net, xtest);
conffig(y, t_test);
</PRE>

Creates a 3 nearest neighbour model <CODE>net</CODE> and then applies it to
the data <CODE>xtest</CODE>.  The results are plotted as a confusion matrix with
<CODE>conffig</CODE>.

<p><h2>
See Also
</h2>
<CODE><a href="kmeans.htm">kmeans</a></CODE>, <CODE><a href="knn.htm">knn</a></CODE><hr>
<b>Pages:</b>
<a href="index.htm">Index</a>
<hr>
<p>Copyright (c) Ian T Nabney (1996-9)


</body>
</html>