Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/fevbayes.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual fevbayes </title> </head> <body> <H1> fevbayes </H1> <h2> Purpose </h2> Evaluate Bayesian regularisation for network forward propagation. <p><h2> Synopsis </h2> <PRE> extra = fevbayes(net, y, a, x, t, x_test) [extra, invhess] = fevbayes(net, y, a, x, t, x_test, invhess) </PRE> <p><h2> Description </h2> <CODE>extra = fevbayes(net, y, a, x, t, x_test)</CODE> takes a network data structure <CODE>net</CODE> together with a set of hidden unit activations <CODE>a</CODE> from test inputs <CODE>x_test</CODE>, training data inputs <CODE>x</CODE> and <CODE>t</CODE> and outputs a matrix of extra information <CODE>extra</CODE> that consists of error bars (variance) for a regression problem or moderated outputs for a classification problem. The optional argument (and return value) <CODE>invhess</CODE> is the inverse of the network Hessian computed on the training data inputs and targets. Passing it in avoids recomputing it, which can be a significant saving for large training sets. <p>This is called by network-specific functions such as <CODE>mlpevfwd</CODE> which are needed since the return values (predictions and hidden unit activations) for different network types are in different orders (for good reasons). <p><h2> See Also </h2> <CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE>, <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE>, <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>