Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/learning/score_dags_old.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function score = score_dags(data, ns, dags, varargin) % SCORE_DAGS Compute the score of one or more DAGs % score = score_dags(data, ns, dags, varargin) % % data{i,m} = value of node i in case m (can be a cell array). % node_sizes(i) is the number of size of node i. % dags{g} is the g'th dag % score(g) is the score of the i'th dag % % The following optional arguments can be specified in the form of name/value pairs: % [default value in brackets] % % scoring_fn - 'bayesian' or 'bic' [ 'bayesian' ] % Currently, only networks with all tabular nodes support Bayesian scoring. % type - type{i} is the type of CPD to use for node i, where the type is a string % of the form 'tabular', 'noisy_or', 'gaussian', etc. [ all cells contain 'tabular' ] % params - params{i} contains optional arguments passed to the CPD constructor for node i, % or [] if none. [ all cells contain {'prior', 1}, meaning use uniform Dirichlet priors ] % discrete - the list of discrete nodes [ 1:N ] % clamped - clamped(i,m) = 1 if node i is clamped in case m [ zeros(N, ncases) ] % % e.g., score = score_dags(data, ns, mk_all_dags(n), 'scoring_fn', 'bic', 'params', []); % % If the DAGs have a lot of families in common, we can cache the sufficient statistics, % making this potentially more efficient than scoring the DAGs one at a time. % (Caching is not currently implemented, however.) [n ncases] = size(data); % set default params type = cell(1,n); params = cell(1,n); for i=1:n type{i} = 'tabular'; params{i} = { 'prior_type', 'dirichlet', 'dirichlet_weight', 1 }; end scoring_fn = 'bayesian'; discrete = 1:n; clamped = zeros(n, ncases); args = varargin; nargs = length(args); for i=1:2:nargs switch args{i}, case 'scoring_fn', scoring_fn = args{i+1}; case 'type', type = args{i+1}; case 'discrete', discrete = args{i+1}; case 'clamped', clamped = args{i+1}; case 'params', if isempty(args{i+1}), params = cell(1,n); else params = args{i+1}; end end end NG = length(dags); score = zeros(1, NG); for g=1:NG dag = dags{g}; for j=1:n u = find(clamped(j,:)==0); ps = parents(dag, j); score(g) = score(g) + score_family(j, ps, type{j}, scoring_fn, ns, discrete, data(:,u), params{j}); end end