Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/learning/dirichlet_score_family.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function LL = dirichlet_score_family(counts, prior) % DIRICHLET_SCORE Compute the log marginal likelihood of a single family % LL = dirichlet_score(counts, prior) % % counts(a, b, ..., z) is the number of times parent 1 = a, parent 2 = b, ..., child = z % prior is an optional multidimensional array of the same shape as counts. % It defaults to a uniform prior. % % We marginalize out the parameters: % LL = log \int \prod_m P(x(i,m) | x(Pa_i,m), theta_i) P(theta_i) d(theta_i) % LL = log[ prod_j gamma(alpha_ij)/gamma(alpha_ij + N_ij) * % prod_k gamma(alpha_ijk + N_ijk)/gamma(alpha_ijk) ] % Call the prod_k term U and the prod_j term V. % We reshape all quantities into (j,k) matrices % This formula was first derived by Cooper and Herskovits, 1992. % See also "Learning Bayesian Networks", Heckerman, Geiger and Chickering, MLJ 95. ns = mysize(counts); ns_ps = ns(1:end-1); ns_self = ns(end); if nargin < 2, prior = normalise(myones(ns)); end if 1 prior = reshape(prior(:), [prod(ns_ps) ns_self]); counts = reshape(counts, [prod(ns_ps) ns_self]); %U = prod(gamma(prior + counts) ./ gamma(prior), 2); % mult over k LU = sum(gammaln(prior + counts) - gammaln(prior), 2); alpha_ij = sum(prior, 2); % sum over k N_ij = sum(counts, 2); %V = gamma(alpha_ij) ./ gamma(alpha_ij + N_ij); LV = gammaln(alpha_ij) - gammaln(alpha_ij + N_ij); %L = prod(U .* V); LL = sum(LU + LV); else CPT = mk_stochastic(prior + counts); LL = sum(log(CPT(:) .* counts(:))); end