Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/learning/bayes_update_params.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = bayes_update_params(bnet, cases, clamped) % BAYES_UPDATE_PARAMS Bayesian parameter updating given completely observed data % bnet = bayes_update_params(bnet, cases, clamped) % % If there is a missing data, you must use EM. % cases(i,m) is the value assigned to node i in case m (this can also be a cell array). % clamped(i,m) = 1 if node i was set by intervention in case m (default: clamped = zeros). % Clamped nodes are not updated. % If there is a single case, clamped is a list of the clamped nodes, not a bit vector. %if iscell(cases), usecell = 1; else usecell = 0; end n = length(bnet.dag); ncases = size(cases, 2); if n ~= size(cases, 1) error('data must be of size nnodes * ncases'); end if ncases == 1 % clamped is a list of nodes if nargin < 3, clamped = []; end clamp_set = clamped; clamped = zeros(n,1); clamped(clamp_set) = 1; else % each row of clamped is a bit vector if nargin < 3, clamped = zeros(n,ncases); end end for i=1:n e = bnet.equiv_class(i); if adjustable_CPD(bnet.CPD{e}) u = find(clamped(i,:)==0); ps = parents(bnet.dag, i); bnet.CPD{e} = bayes_update_params(bnet.CPD{e}, cases(i,u), cases(ps,u)); end end