Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/general/mk_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = mk_dbn(intra, inter, node_sizes, varargin) % MK_DBN Make a Dynamic Bayesian Network. % % BNET = MK_DBN(INTRA, INTER, NODE_SIZES, ...) makes a DBN with arcs % from i in slice t to j in slice t iff intra(i,j) = 1, and % from i in slice t to j in slice t+1 iff inter(i,j) = 1, % for i,j in {1, 2, ..., n}, where n = num. nodes per slice, and t >= 1. % node_sizes(i) is the number of values node i can take on. % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. % See also mk_bnet. % % Optional arguments [default in brackets] % 'discrete' - list of discrete nodes [1:n] % 'observed' - the list of nodes which will definitely be observed in every slice of every case [ [] ] % 'eclass1' - equiv class for slice 1 [1:n] % 'eclass2' - equiv class for slice 2 [tie nodes with equivalent parents to slice 1] % equiv_class1(i) = j means node i in slice 1 gets its parameters from bnet.CPD{j}, % i.e., nodes i and j have tied parameters. % 'intra1' - topology of first slice, if different from others % 'names' - a cell array of strings to be associated with nodes 1:n [{}] % This creates an associative array, so you write e.g. % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42' % assuming names = { 'foo', 'bar', ...}. % % For backwards compatibility with BNT2, arguments can also be specified as follows % bnet = mk_dbn(intra, inter, node_sizes, dnodes, eclass1, eclass2, intra1) % % After calling this function, you must specify the parameters (conditional probability % distributions) using bnet.CPD{i} = gaussian_CPD(...) or tabular_CPD(...) etc. n = length(intra); ss = n; bnet.nnodes_per_slice = ss; bnet.intra = intra; bnet.inter = inter; bnet.intra1 = intra; dag = zeros(2*n); dag(1:n,1:n) = bnet.intra1; dag(1:n,(1:n)+n) = bnet.inter; dag((1:n)+n,(1:n)+n) = bnet.intra; bnet.dag = dag; bnet.names = {}; directed = 1; if ~acyclic(dag,directed) error('graph must be acyclic') end bnet.eclass1 = 1:n; %bnet.eclass2 = (1:n)+n; bnet.eclass2 = bnet.eclass1; for i=1:ss if isequal(parents(dag, i+ss), parents(dag, i)+ss) %fprintf('%d has isomorphic parents, eclass %d\n', i, bnet.eclass2(i)) else bnet.eclass2(i) = max(bnet.eclass2) + 1; %fprintf('%d has non isomorphic parents, eclass %d\n', i, bnet.eclass2(i)) end end dnodes = 1:n; bnet.observed = []; if nargin >= 4 args = varargin; nargs = length(args); if ~isstr(args{1}) if nargs >= 1, dnodes = args{1}; end if nargs >= 2, bnet.eclass1 = args{2}; end if nargs >= 3, bnet.eclass2 = args{3}; end if nargs >= 4, bnet.intra1 = args{4}; end else for i=1:2:nargs switch args{i}, case 'discrete', dnodes = args{i+1}; case 'observed', bnet.observed = args{i+1}; case 'eclass1', bnet.eclass1 = args{i+1}; case 'eclass2', bnet.eclass2 = args{i+1}; case 'intra1', bnet.intra1 = args{i+1}; %case 'ar_hmm', bnet.ar_hmm = args{i+1}; % should check topology case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n)); otherwise, error(['invalid argument name ' args{i}]); end end end end bnet.observed = sort(bnet.observed); % for comparing sets ns = node_sizes; bnet.node_sizes_slice = ns(:)'; bnet.node_sizes = [ns(:) ns(:)]; cnodes = mysetdiff(1:n, dnodes); bnet.dnodes_slice = dnodes; bnet.cnodes_slice = cnodes; bnet.dnodes = [dnodes dnodes+n]; bnet.cnodes = [cnodes cnodes+n]; bnet.equiv_class = [bnet.eclass1(:) bnet.eclass2(:)]; bnet.CPD = cell(1,max(bnet.equiv_class(:))); eclass = bnet.equiv_class(:); E = max(eclass); bnet.rep_of_eclass = zeros(1,E); for e=1:E mems = find(eclass==e); bnet.rep_of_eclass(e) = mems(1); end ss = n; onodes = bnet.observed; hnodes = mysetdiff(1:ss, onodes); bnet.hidden_bitv = zeros(1,2*ss); bnet.hidden_bitv(hnodes) = 1; bnet.hidden_bitv(hnodes+ss) = 1; bnet.parents = cell(1, 2*ss); for i=1:ss bnet.parents{i} = parents(bnet.dag, i); bnet.parents{i+ss} = parents(bnet.dag, i+ss); end bnet.auto_regressive = zeros(1,ss); % ar(i)=1 means (observed) node i depends on i in the previous slice for o=bnet.observed(:)' if any(bnet.parents{o+ss} <= ss) bnet.auto_regressive(o) = 1; end end