Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/general/Old/mk_gdl_graph.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function gdl = mk_gdl_graph(G, domains, node_sizes, kernels, varargin) % MK_GDL_GRAPH Make a GDL (generalized distributed law) graph % gdl = mk_gdl_graph(G, domains, node_sizes, kernels, ...) % % A GDL graph is like a moralized, but untriangulated, Bayes net: % each "node" represents a domain with a corresponding kernel function. % For details, see "The Generalized Distributive Law", Aji and McEliece, % IEEE Trans. Info. Theory, 46(2): 325--343, 2000 % % G(i,j) = 1 if there is an (undirected) edge between domains i,j % % domains{i} is the domain of node i % % node_sizes(i) is the number of values node i can take on, % or the length of node i if i is a continuous-valued vector. % node_sizes(i) = 1 if i is a utility node. % % kernels is the list of kernel functions % % The list below gives optional arguments [default value in brackets]. % % equiv_class - equiv_class(i)=j means factor node i gets its params from factors{j} [1:F] % discrete - the list of nodes which are discrete random variables [1:N] % chance - the list of nodes which are random variables [1:N] % decision - the list of nodes which are decision nodes [ [] ] % utility - the list of nodes which are utility nodes [ [] ] ns = node_sizes; N = length(domains); vars = []; for i=1:N vars = myunion(vars, domains{i}); end Nvars = length(vars); gdl.equiv_class = 1:length(kernels); gdl.chance_nodes = 1:Nvars; gdl.utility_nodes = []; gdl.decision_nodes = []; gdl.dnodes = 1:Nvars; if nargin >= 5 args = varargin; nargs = length(args); for i=1:2:nargs switch args{i}, case 'equiv_class', bnet.equiv_class = args{i+1}; case 'chance', bnet.chance_nodes = args{i+1}; case 'utility', bnet.utility_nodes = args{i+1}; case 'decision', bnet.decision_nodes = args{i+1}; case 'discrete', bnet.dnodes = args{i+1}; otherwise, error(['invalid argument name ' args{i}]); end end end gdl.G = G; gdl.vars = vars; gdl.doms = domains; gdl.node_sizes = node_sizes; gdl.cnodes = mysetdiff(vars, gdl.dnodes); gdl.kernels = kernels; gdl.type = 'gdl'; % Compute a bit vector representation of the set of domains % dom_bitv(i,j) = 1 iff variable j occurs in domain i gdl.dom_bitv = zeros(N, length(vars)); for i=1:N gdl.dom_bitv(i, domains{i}) = 1; end % compute the interesection of the domains on either side of each edge (separating set) gdl.sepset = cell(N, N); gdl.nbrs = cell(1,N); for i=1:N nbrs = neighbors(G, i); gdl.nbrs{i} = nbrs; for j = nbrs(:)' gdl.sepset{i,j} = myintersect(domains{i}, domains{j}); end end