Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Fit a piece-wise linear regression model. % Here is the model % % X \ % | | % Q | % | / % Y % % where all arcs point down. % We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian. % Q is hidden, X and Y are observed. X = 1; Q = 2; Y = 3; dag = zeros(3,3); dag(X,[Q Y]) = 1; dag(Q,Y) = 1; ns = [1 2 1]; % make X and Y scalars, and have 2 experts dnodes = [2]; onodes = [1 3]; bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary mu = [0 0]; sigma = 1; Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); W = [-1 1]; W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); bnet.CPD{1} = root_CPD(bnet, 1); bnet.CPD{2} = softmax_CPD(bnet, 2, w, b); bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu, 'cov', Sigma, 'weights', W2); % Check inference x = 0.1; ystar = 1; engine = jtree_inf_engine(bnet); [engine, loglik] = enter_evidence(engine, {x, [], ystar}); Qpost = marginal_nodes(engine, 2); % eta(i,:) = softmax (gating) params for expert i eta = [b' w']; % theta(i,:) = regression vector for expert i theta = [mu' W']; % yhat(i) = E[y | Q=i, x] = prediction of i'th expert x1 = [1 x]'; yhat = theta * x1; % gate_prior(i,:) = Pr(Q=i | x) gate_prior = normalise(exp(eta * x1)); % cond_lik(i) = Pr(y | Q=i, x) cond_lik = (1/(sqrt(2*pi)*sigma)) * exp(-(0.5/sigma^2) * ((ystar - yhat) .* (ystar - yhat))); % gate_posterior(i,:) = Pr(Q=i | x, y) [gate_posterior, lik] = normalise(gate_prior .* cond_lik); assert(approxeq(gate_posterior(:), Qpost.T(:))); assert(approxeq(log(lik), loglik));