Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/gaussian2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make the following network (from Jensen (1996) p84 fig 4.17) % 1 % / | \ % 2 3 4 % | | | % 5 6 7 % \/ \/ % 8 9 % where all arcs point downwards N = 9; dag = zeros(N,N); dag(1,2)=1; dag(1,3)=1; dag(1,4)=1; dag(2,5)=1; dag(3,6)=1; dag(4,7)=1; dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1; ns = [5 4 3 2 2 1 2 2 2]; % vector-valued nodes %ns = ones(1,9); % scalar nodes dnodes = []; bnet = mk_bnet(dag, ns, 'discrete', []); rand('state', 0); randn('state', 0); for i=1:N bnet.CPD{i} = gaussian_CPD(bnet, i); end clear engine; engine{1} = gaussian_inf_engine(bnet); engine{2} = jtree_inf_engine(bnet); [err, time] = cmp_inference_static(bnet, engine); Nsamples = 100; samples = cell(N, Nsamples); for s=1:Nsamples samples(:,s) = sample_bnet(bnet); end bnet2 = learn_params(bnet, samples);