Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/cg1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Conditional Gaussian network % The waste incinerator emissions example from Lauritzen (1992), % "Propogation of Probabilities, Means and Variances in Mixed Graphical Association Models", % JASA 87(420): 1098--1108 % % This example is reprinted on p145 of "Probabilistic Networks and Expert Systems", % Cowell, Dawid, Lauritzen and Spiegelhalter, 1999, Springer. % % For a picture, see http://www.cs.berkeley.edu/~murphyk/Bayes/usage.html#cg_model ns = 2*ones(1,9); %bnet = mk_incinerator_bnet(ns); bnet = mk_incinerator_bnet; engines = {}; %engines{end+1} = stab_cond_gauss_inf_engine(bnet); engines{end+1} = jtree_inf_engine(bnet); engines{end+1} = cond_gauss_inf_engine(bnet); nengines = length(engines); F = 1; W = 2; E = 3; B = 4; C = 5; D = 6; Min = 7; Mout = 8; L = 9; n = 9; dnodes = [B F W]; cnodes = mysetdiff(1:n, dnodes); evidence = cell(1,n); % no evidence ll = zeros(1, nengines); for e=1:nengines [engines{e}, ll(e)] = enter_evidence(engines{e}, evidence); end %assert(approxeq(ll(1), ll))) ll % Compare to the results in table on p1107. % These results are printed to 3dp in Cowell p150 mu = zeros(1,n); sigma = zeros(1,n); dprob = zeros(1,n); addev = 1; tol = 1e-2; for e=1:nengines for i=cnodes(:)' m = marginal_nodes(engines{e}, i, addev); mu(i) = m.mu; sigma(i) = sqrt(m.Sigma); end for i=dnodes(:)' m = marginal_nodes(engines{e}, i, addev); dprob(i) = m.T(1); end assert(approxeq(mu([E D C L Min Mout]), [-3.25 3.04 -1.85 1.48 -0.214 2.83], tol)) assert(approxeq(sigma([E D C L Min Mout]), [0.709 0.770 0.507 0.631 0.459 0.860], tol)) assert(approxeq(dprob([B F W]), [0.85 0.95 0.29], tol)) %m = marginal_nodes(engines{e}, bnet.names('E'), addev); %assert(approxeq(m.mu, -3.25, tol)) %assert(approxeq(sqrt(m.Sigma), 0.709, tol)) end % Add evidence (p 1105, top right) evidence = cell(1,n); evidence{W} = 1; % industrial evidence{L} = 1.1; evidence{C} = -0.9; ll = zeros(1, nengines); for e=1:nengines [engines{e}, ll(e)] = enter_evidence(engines{e}, evidence); end assert(all(approxeq(ll(1), ll))) for e=1:nengines for i=cnodes(:)' m = marginal_nodes(engines{e}, i, addev); mu(i) = m.mu; sigma(i) = sqrt(m.Sigma); end for i=dnodes(:)' m = marginal_nodes(engines{e}, i, addev); dprob(i) = m.T(1); end assert(approxeq(mu([E D C L Min Mout]), [-3.90 3.61 -0.9 1.1 0.5 4.11], tol)) assert(approxeq(sigma([E D C L Min Mout]), [0.076 0.326 0 0 0.1 0.344], tol)) assert(approxeq(dprob([B F W]), [0.0122 0.9995 1], tol)) end