Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/brainy.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Example of explaining away from % http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html#explainaway % % Suppose you have to be brainy or smart to get into college. % B S P(C=1) P(C=2) 1=false 2=true % 1 1 1.0 0.0 % 2 1 0.0 1.0 % 1 2 0.0 1.0 % 2 2 0.0 1.0 % % % If we observe that you are in college, you must be either brainy or sporty or both. % If we observre you are in college and sporty, it is less likely you are brainy, % since brainy-ness and sporty-ness compete as causal explanations of the effect. % B S % \/ % C B = 1; S = 2; C = 3; dag = zeros(3,3); dag([B S], C)=1; ns = 2*ones(1,3); bnet = mk_bnet(dag, ns); bnet.CPD{B} = tabular_CPD(bnet, B, 'CPT', [0.5 0.5]'); bnet.CPD{S} = tabular_CPD(bnet, S, 'CPT', [0.5 0.5]'); CPT = zeros(2,2,2); CPT(1,1,:) = [1 0]; CPT(2,1,:) = [0 1]; CPT(1,2,:) = [0 1]; CPT(2,2,:) = [0 1]; bnet.CPD{C} = tabular_CPD(bnet, C, 'CPT', CPT); engine = jtree_inf_engine(bnet); ev = cell(1,3); ev{C} = 2; engine = enter_evidence(engine, ev); m = marginal_nodes(engine, B); fprintf('P(B=true|C=true) = %5.3f\n', m.T(2)) % 0.67 ev{S} = 2; engine = enter_evidence(engine, ev); m = marginal_nodes(engine, B); fprintf('P(B=true|C=true,S=true) = %5.3f\n', m.T(2)) % 0.5 = unconditional baseline P(B=true)