Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/limids/asia_dt1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% decision theoretic version of asia network % Cowell et al, p177 % We explicitely add the no-forgetting arcs. Smoking = 1; VisitToAsia = 2; Bronchitis = 3; LungCancer = 4; TB = 5; Do_Xray = 6; TBorCancer = 7; Util_Xray = 8; Dys = 9; posXray = 10; Do_Hosp = 11; Util_Hosp = 12; n = 12; dag = zeros(n); dag(Smoking, [Bronchitis LungCancer]) = 1; dag(VisitToAsia, [TB Do_Xray Do_Hosp]) = 1; dag(Bronchitis, Dys) = 1; dag(LungCancer, [Util_Hosp TBorCancer]) = 1; dag(TB, [Util_Hosp TBorCancer Util_Xray]) = 1; dag(Do_Xray, [posXray Util_Xray Do_Hosp]) = 1; dag(TBorCancer, [Dys posXray]) = 1; dag(Dys, Do_Hosp) = 1; dag(posXray, Do_Hosp) = 1; dag(Do_Hosp, Util_Hosp) = 1; dnodes = [Do_Xray Do_Hosp]; unodes = [Util_Xray Util_Hosp]; cnodes = mysetdiff(1:n, [dnodes unodes]); % chance nodes ns = 2*ones(1,n); ns(unodes) = 1; limid = mk_limid(dag, ns, 'chance', cnodes, 'decision', dnodes, 'utility', unodes); % 1 = yes, 2 = no limid.CPD{VisitToAsia} = tabular_CPD(limid, VisitToAsia, [0.01 0.99]); limid.CPD{Bronchitis} = tabular_CPD(limid, Bronchitis, [0.6 0.3 0.4 0.7]); limid.CPD{Dys} = tabular_CPD(limid, Dys, [0.9 0.7 0.8 0.1 0.1 0.3 0.2 0.9]); limid.CPD{TBorCancer} = tabular_CPD(limid, TBorCancer, [1 1 1 0 0 0 0 1]); limid.CPD{LungCancer} = tabular_CPD(limid, LungCancer, [0.1 0.01 0.9 0.99]); limid.CPD{Smoking} = tabular_CPD(limid, Smoking, [0.5 0.5]); limid.CPD{TB} = tabular_CPD(limid, TB, [0.05 0.01 0.95 0.99]); limid.CPD{posXray} = tabular_CPD(limid, posXray, [0.98 0.5 0.05 0.5 0.02 0.5 0.95 0.5]); limid.CPD{Util_Hosp} = tabular_utility_node(limid, Util_Hosp, [180 120 160 15 2 4 0 40]); limid.CPD{Util_Xray} = tabular_utility_node(limid, Util_Xray, [0 1 10 10]); for i=dnodes(:)' limid.CPD{i} = tabular_decision_node(limid, i); end engines = {}; engines{end+1} = global_joint_inf_engine(limid); engines{end+1} = jtree_limid_inf_engine(limid); %engines{end+1} = belprop_inf_engine(limid); exact = [1 2]; %approx = 3; approx = []; NE = length(engines); MEU = zeros(1, NE); niter = zeros(1, NE); strategy = cell(1, NE); tol = 1e-2; for e=1:length(engines) [strategy{e}, MEU(e), niter(e)] = solve_limid(engines{e}); end for e=exact(:)' assert(approxeq(MEU(e), 47.49, tol)) assert(isequal(strategy{e}{Do_Xray}(:)', [1 0 0 1])) % Check the hosptialize strategy is correct (p180) % We assume the patient has not been to Asia and therefore did not have an Xray. % In this case it is optimal not to hospitalize regardless of whether the patient has % dyspnoea or not (and of course regardless of the value of pos_xray). asia = 2; do_xray = 2; for dys = 1:2 for pos_xray = 1:2 assert(argmax(squeeze(strategy{e}{Do_Hosp}(asia, do_xray, dys, pos_xray, :))) == 2) end end end for e=approx(:)' approxeq(strategy{exact(1)}{Do_Xray}, strategy{e}{Do_Xray}) approxeq(strategy{exact(1)}{Do_Hosp}, strategy{e}{Do_Hosp}) end