Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/skf_data_assoc_gmux.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% We consider a switching Kalman filter of the kind studied % by Zoubin Ghahramani, i.e., where the switch node determines % which of the hidden chains we get to observe (data association). % e.g., for n=2 chains % % X1 -> X1 % | X2 -> X2 % \ | % v % Y % ^ % | % S % % Y is a gmux (multiplexer) node, where S switches in one of the parents. % We differ from Zoubin by not connecting the S nodes over time (which % doesn't make sense for data association). % Indeed, we assume the S nodes are always observed. % % % We will track 2 objects (points) moving in the plane, as in BNT/Kalman/tracking_demo. % We will alternate between observing them. nobj = 2; N = nobj+2; Xs = 1:nobj; S = nobj+1; Y = nobj+2; intra = zeros(N,N); inter = zeros(N,N); intra([Xs S], Y) =1; for i=1:nobj inter(Xs(i), Xs(i))=1; end Xsz = 4; % state space = (x y xdot ydot) Ysz = 2; ns = zeros(1,N); ns(Xs) = Xsz; ns(Y) = Ysz; ns(S) = n; bnet = mk_dbn(intra, inter, ns, 'discrete', S, 'observed', [S Y]); % For each object, we have % X(t+1) = F X(t) + noise(Q) % Y(t) = H X(t) + noise(R) F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]; H = [1 0 0 0; 0 1 0 0]; Q = 1e-3*eye(Xsz); %R = 1e-3*eye(Ysz); R = eye(Ysz); % We initialise object 1 moving to the right, and object 2 moving to the left % (Here, we assume nobj=2) init_state{1} = [10 10 1 0]'; init_state{2} = [10 -10 -1 0]'; for i=1:nobj bnet.CPD{Xs(i)} = gaussian_CPD(bnet, Xs(i), 'mean', init_state{i}, 'cov', 1e-4*eye(Xsz)); end bnet.CPD{S} = root_CPD(bnet, S); % always observed bnet.CPD{Y} = gmux_CPD(bnet, Y, 'cov', repmat(R, [1 1 nobj]), 'weights', repmat(H, [1 1 nobj])); % slice 2 eclass = bnet.equiv_class; for i=1:nobj bnet.CPD{eclass(Xs(i), 2)} = gaussian_CPD(bnet, Xs(i)+N, 'mean', zeros(Xsz,1), 'cov', Q, 'weights', F); end % Observe objects at random T = 10; evidence = cell(N, T); data_assoc = sample_discrete(normalise(ones(1,nobj)), 1, T); evidence(S,:) = num2cell(data_assoc); evidence = sample_dbn(bnet, 'evidence', evidence); % plot the data true_state = cell(1,nobj); for i=1:nobj true_state{i} = cell2num(evidence(Xs(i), :)); % true_state{i}(:,t) = [x y xdot ydot]' end obs_pos = cell2num(evidence(Y,:)); figure(1) clf hold on styles = {'rx', 'go', 'b+', 'k*'}; for i=1:nobj plot(true_state{i}(1,:), true_state{i}(2,:), styles{i}); end for t=1:T text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t)); end hold off relax_axes(0.1) % Inference ev = cell(N,T); ev(bnet.observed,:) = evidence(bnet.observed, :); engines = {}; engines{end+1} = jtree_dbn_inf_engine(bnet); %engines{end+1} = scg_unrolled_dbn_inf_engine(bnet, T); engines{end+1} = pearl_unrolled_dbn_inf_engine(bnet); E = length(engines); inferred_state = cell(nobj,E); % inferred_state{i,e}(:,t) for e=1:E engines{e} = enter_evidence(engines{e}, ev); for i=1:nobj inferred_state{i,e} = zeros(4, T); for t=1:T m = marginal_nodes(engines{e}, Xs(i), t); inferred_state{i,e}(:,t) = m.mu; end end end inferred_state{1,1} inferred_state{1,2} % Plot results figure(2) clf hold on styles = {'rx', 'go', 'b+', 'k*'}; nstyles = length(styles); c = 1; for e=1:E for i=1:nobj plot(inferred_state{i,e}(1,:), inferred_state{i,e}(2,:), styles{mod(c-1,nstyles)+1}); c = c + 1; end end for t=1:T text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t)); end hold off relax_axes(0.1)