Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/scg_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Test whether stable conditional Gaussian inference works % Make a linear dynamical system % X1 -> X2 % | | % v v % Y1 Y2 intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; n = 2; X = 2; % size of hidden state Y = 2; % size of observable state ns = [X Y]; bnet = mk_dbn(intra, inter, ns, 'discrete', [], 'observed', 2); x0 = rand(X,1); V0 = eye(X); C0 = rand(Y,X); R0 = eye(Y); A0 = rand(X,X); Q0 = eye(X); bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0); bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0); bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0); T = 5; % fixed length sequences engine = {}; engine{end+1} = kalman_inf_engine(bnet); engine{end+1} = scg_unrolled_dbn_inf_engine(bnet, T); engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll', 0);