Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/kjaerulff1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Compare the speeds of various inference engines on the DBN in Kjaerulff % "dHugin: A computational system for dynamic time-sliced {B}ayesian networks", % Intl. J. Forecasting 11:89-111, 1995. % % The intra structure is (all arcs point downwards) % % 1 -> 2 % \ / % 3 % | % 4 % / \ % 5 6 % \ / % 7 % | % 8 % % The inter structure is 1->1, 4->4, 8->8 seed = 0; rand('state', seed); randn('state', seed); ss = 8; intra = zeros(ss); intra(1,[2 3])=1; intra(2,3)=1; intra(3,4)=1; intra(4,[5 6])=1; intra([5 6], 7)=1; intra(7,8)=1; inter = zeros(ss); inter(1,1)=1; inter(4,4)=1; inter(8,8)=1; ns = 2*ones(1,ss); onodes = 2; bnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'eclass2', (1:ss)+ss); for i=1:2*ss bnet.CPD{i} = tabular_CPD(bnet, i); end T = 4; engine = {}; engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); engine{end+1} = jtree_dbn_inf_engine(bnet); engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); %engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); % observed nodes have children inf_time = cmp_inference_dbn(bnet, engine, T) learning_time = cmp_learning_dbn(bnet, engine, T)