Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/fhmm_infer.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [loglik, gamma] = fhmm_infer(inter, CPTs_slice1, CPTs, obsmat, node_sizes) % FHMM_INFER Exact inference for a factorial HMM. % [loglik, gamma] = fhmm_infer(inter, CPTs_slice1, CPTs, obsmat, node_sizes) % % Inputs: % inter - the inter-slice adjacency matrix % CPTs_slice1{s}(j) = Pr(Q(s,1) = j) where Q(s,t) = hidden node s in slice t % CPT{s}(i1, i2, ..., j) = Pr(Q(s,t) = j | Pa(s,t-1) = i1, i2, ...), % obsmat(i,t) = Pr(y(t) | Q(t)=i) % node_sizes is a vector with the cardinality of the hidden nodes % % Outputs: % gamma(i,t) = Pr(X(t)=i | O(1:T)) as in an HMM, % except that i is interpreted as an M digit, base-K number (if there are M chains each of cardinality K). % % % For M chains each of cardinality K, the frontiers (i.e., cliques) % contain M+1 nodes, and it takes M steps to advance the frontier by one time step, % so the run time is O(T M K^(M+1)). % An HMM takes O(T S^2) where S is the size of the state space. % Collapsing the FHMM to an HMM results in S = K^M. % For details, see % "The Factored Frontier Algorithm for Approximate Inference in DBNs", % Kevin Murphy and Yair Weiss, submitted to NIPS 2000. % % The frontier algorithm makes the following topological assumptions: % % - All nodes are persistent (connect to the next slice) % - No connections within a timeslice % - There is a single observation variable, which depends on all the hidden nodes % - Each node can have several parents in the previous time slice (generalizes a FHMM slightly) % % The forwards pass of the frontier algorithm can be explained with the following example. % Suppose we have 3 hidden nodes per slice, A, B, C. % The goal is to compute alpha(j, t) = Pr( (A_t,B_t,C_t)=j | Y(1:t)) % We move alpha from t to t+1 one node at a time, as follows. % We define the following quantities: % s([a1 b1 c1], 1) = Prob(A(t)=a1, B(t)=b1, C(t)=c1 | Y(1:t)) = alpha(j, t) % s([a2 b1 c1], 2) = Prob(A(t+1)=a2, B(t)=b1, C(t)=c1 | Y(1:t)) % s([a2 b2 c1], 3) = Prob(A(t+1)=a2, B(t+1)=b2, C(t)=c1 | Y(1:t)) % s([a2 b2 c2], 4) = Prob(A(t+1)=a2, B(t+1)=b2, C(t+1)=c2 | Y(1:t)) % s([a2 b2 c2], 5) = Prob(A(t+1)=a2, B(t+1)=b2, C(t+1)=c2 | Y(1:t+1)) = alpha(j, t+1) % % These can be computed recursively as follows: % % s([a2 b1 c1], 2) = sum_{a1} P(a2|a1) s([a1 b1 c1], 1) % s([a2 b2 c1], 3) = sum_{b1} P(b2|b1) s([a2 b1 c1], 2) % s([a2 b2 c2], 4) = sum_{c1} P(c2|c1) s([a2 b2 c1], 1) % s([a2 b2 c2], 5) = normalise( s([a2 b2 c2], 4) .* P(Y(t+1)|a2,b2,c2) [kk,ll,mm] = make_frontier_indices(inter, node_sizes); % can pass in as args scaled = 1; M = length(node_sizes); S = prod(node_sizes); T = size(obsmat, 2); alpha = zeros(S, T); beta = zeros(S, T); gamma = zeros(S, T); scale = zeros(1,T); tiny = exp(-700); alpha(:,1) = make_prior_from_CPTs(CPTs_slice1, node_sizes); alpha(:,1) = alpha(:,1) .* obsmat(:, 1); if scaled s = sum(alpha(:,1)); if s==0, s = s + tiny; end scale(1) = 1/s; else scale(1) = 1; end alpha(:,1) = alpha(:,1) * scale(1); %a = zeros(S, M+1); %b = zeros(S, M+1); anew = zeros(S,1); aold = zeros(S,1); bnew = zeros(S,1); bold = zeros(S,1); for t=2:T %a(:,1) = alpha(:,t-1); aold = alpha(:,t-1); c = 1; for i=1:M ns = node_sizes(i); cpt = CPTs{i}; for j=1:S s = 0; for xx=1:ns %k = kk(xx,j,i); %l = ll(xx,j,i); k = kk(c); l = ll(c); c = c + 1; % s = s + a(k,i) * CPTs{i}(l); s = s + aold(k) * cpt(l); end %a(j,i+1) = s; anew(j) = s; end aold = anew; end %alpha(:,t) = a(:,M+1) .* obsmat(:, obs(t)); alpha(:,t) = anew .* obsmat(:, t); if scaled s = sum(alpha(:,t)); if s==0, s = s + tiny; end scale(t) = 1/s; else scale(t) = 1; end alpha(:,t) = alpha(:,t) * scale(t); end beta(:,T) = ones(S,1) * scale(T); for t=T-1:-1:1 %b(:,1) = beta(:,t+1) .* obsmat(:, obs(t+1)); bold = beta(:,t+1) .* obsmat(:, t+1); c = 1; for i=1:M ns = node_sizes(i); cpt = CPTs{i}; for j=1:S s = 0; for xx=1:ns %k = kk(xx,j,i); %m = mm(xx,j,i); k = kk(c); m = mm(c); c = c + 1; % s = s + b(k,i) * CPTs{i}(m); s = s + bold(k) * cpt(m); end %b(j,i+1) = s; bnew(j) = s; end bold = bnew; end % beta(:,t) = b(:,M+1) * scale(t); beta(:,t) = bnew * scale(t); end if scaled loglik = -sum(log(scale)); % scale(i) is finite else lik = alpha(:,1)' * beta(:,1); loglik = log(lik+tiny); end for t=1:T gamma(:,t) = normalise(alpha(:,t) .* beta(:,t)); end %%%%%%%%%%% function [kk,ll,mm] = make_frontier_indices(inter, node_sizes) % % Precompute indices for use in the frontier algorithm. % These only depend on the topology, not the parameters or data. % Hence we can compute them outside of fhmm_infer. % This saves a lot of run-time computation. M = length(node_sizes); S = prod(node_sizes); mns = max(node_sizes); kk = zeros(mns, S, M); ll = zeros(mns, S, M); mm = zeros(mns, S, M); for i=1:M for j=1:S u = ind2subv(node_sizes, j); x = u(i); for xx=1:node_sizes(i) uu = u; uu(i) = xx; k = subv2ind(node_sizes, uu); kk(xx,j,i) = k; ps = find(inter(:,i)==1); ps = ps(:)'; l = subv2ind(node_sizes([ps i]), [uu(ps) x]); % sum over parent ll(xx,j,i) = l; m = subv2ind(node_sizes([ps i]), [u(ps) xx]); % sum over child mm(xx,j,i) = m; end end end %%%%%%%%% function prior=make_prior_from_CPTs(indiv_priors, node_sizes) % % composite_prior=make_prior(individual_priors, node_sizes) % Make the prior for the first node in a Markov chain % from the priors on each node in the equivalent DBN. % prior{i}(j) = Pr(X_i=j), where X_i is the i'th node in slice 1. % composite_prior(i) = Pr(slice1 = i). n = length(indiv_priors); S = prod(node_sizes); prior = zeros(S,1); for i=1:S vi = ind2subv(node_sizes, i); p = 1; for k=1:n p = p * indiv_priors{k}(vi(k)); end prior(i) = p; end %%%%%%%%%%% function [loglik, alpha, beta] = FHMM_slow(inter, CPTs_slice1, CPTs, obsmat, node_sizes, data) % % Same as the above, except we don't use the optimization of computing the indices outside the loop. scaled = 1; M = length(node_sizes); S = prod(node_sizes); [numex T] = size(data); obs = data; alpha = zeros(S, T); beta = zeros(S, T); a = zeros(S, M+1); b = zeros(S, M+1); scale = zeros(1,T); alpha(:,1) = make_prior_from_CPTs(CPTs_slice1, node_sizes); alpha(:,1) = alpha(:,1) .* obsmat(:, obs(1)); if scaled s = sum(alpha(:,1)); if s==0, s = s + tiny; end scale(1) = 1/s; else scale(1) = 1; end alpha(:,1) = alpha(:,1) * scale(1); for t=2:T fprintf(1, 't %d\n', t); a(:,1) = alpha(:,t-1); for i=1:M for j=1:S u = ind2subv(node_sizes, j); xnew = u(i); s = 0; for xold=1:node_sizes(i) uold = u; uold(i) = xold; k = subv2ind(node_sizes, uold); ps = find(inter(:,i)==1); ps = ps(:)'; l = subv2ind(node_sizes([ps i]), [uold(ps) xnew]); s = s + a(k,i) * CPTs{i}(l); end a(j,i+1) = s; end end alpha(:,t) = a(:,M+1) .* obsmat(:, obs(t)); if scaled s = sum(alpha(:,t)); if s==0, s = s + tiny; end scale(t) = 1/s; else scale(t) = 1; end alpha(:,t) = alpha(:,t) * scale(t); end beta(:,T) = ones(S,1) * scale(T); for t=T-1:-1:1 fprintf(1, 't %d\n', t); b(:,1) = beta(:,t+1) .* obsmat(:, obs(t+1)); for i=1:M for j=1:S u = ind2subv(node_sizes, j); xold = u(i); s = 0; for xnew=1:node_sizes(i) unew = u; unew(i) = xnew; k = subv2ind(node_sizes, unew); ps = find(inter(:,i)==1); ps = ps(:)'; l = subv2ind(node_sizes([ps i]), [u(ps) xnew]); s = s + b(k,i) * CPTs{i}(l); end b(j,i+1) = s; end end beta(:,t) = b(:,M+1) * scale(t); end if scaled loglik = -sum(log(scale)); % scale(i) is finite else lik = alpha(:,1)' * beta(:,1); loglik = log(lik+tiny); end