Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/dhmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make an HMM with discrete observations % X1 -> X2 % | | % v v % Y1 Y2 intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; n = 2; Q = 2; % num hidden states O = 2; % num observable symbols ns = [Q O]; dnodes = 1:2; onodes = [2]; eclass1 = [1 2]; eclass2 = [3 2]; bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes); rand('state', 0); prior1 = normalise(rand(Q,1)); transmat1 = mk_stochastic(rand(Q,Q)); obsmat1 = mk_stochastic(rand(Q,O)); bnet.CPD{1} = tabular_CPD(bnet, 1, prior1); bnet.CPD{2} = tabular_CPD(bnet, 2, obsmat1); bnet.CPD{3} = tabular_CPD(bnet, 3, transmat1); T = 5; % fixed length sequences engine = {}; engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); engine{end+1} = hmm_inf_engine(bnet); engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); if 1 %engine{end+1} = frontier_inf_engine(bnet); % broken engine{end+1} = bk_inf_engine(bnet, 'clusters', {[1]}); engine{end+1} = jtree_dbn_inf_engine(bnet); end inf_time = cmp_inference_dbn(bnet, engine, T); ncases = 2; max_iter = 2; [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); % Compare to HMM toolbox data = zeros(ncases, T); for i=1:ncases %data(i,:) = cat(2, cases{i}{onodes,:}); data(i,:) = cell2num(cases{i}(onodes,:)); end [LL2, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', max_iter); e = 1; assert(approxeq(prior2, CPD{e,1}.CPT)) assert(approxeq(obsmat2, CPD{e,2}.CPT)) assert(approxeq(transmat2, CPD{e,3}.CPT)) assert(approxeq(LL2, LL{e}))