Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/set_fields.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = set_fields(CPD, varargin) % SET_PARAMS Set the parameters (fields) for a gaussian_CPD object % CPD = set_params(CPD, name/value pairs) % % The following optional arguments can be specified in the form of name/value pairs: % % mean - mu(:,i) is the mean given Q=i % cov - Sigma(:,:,i) is the covariance given Q=i % weights - W(:,:,i) is the regression matrix given Q=i % cov_type - if 'diag', Sigma(:,:,i) is diagonal % tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i % clamp_mean - if 1, we do not adjust mu(:,i) during learning % clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning % clamp_weights - if 1, we do not adjust W(:,:,i) during learning % clamp - if 1, we do not adjust any params % cov_prior_weight - weight given to I prior for estimating Sigma % cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0] % % e.g., CPD = set_params(CPD, 'mean', [0;0]) args = varargin; nargs = length(args); for i=1:2:nargs switch args{i}, case 'mean', CPD.mean = args{i+1}; case 'cov', CPD.cov = args{i+1}; case 'weights', CPD.weights = args{i+1}; case 'cov_type', CPD.cov_type = args{i+1}; %case 'tied_cov', CPD.tied_cov = strcmp(args{i+1}, 'yes'); case 'tied_cov', CPD.tied_cov = args{i+1}; case 'clamp_mean', CPD.clamped_mean = args{i+1}; case 'clamp_cov', CPD.clamped_cov = args{i+1}; case 'clamp_weights', CPD.clamped_weights = args{i+1}; case 'clamp', clamp = args{i+1}; CPD.clamped_mean = clamp; CPD.clamped_cov = clamp; CPD.clamped_weights = clamp; case 'cov_prior_weight', CPD.cov_prior_weight = args{i+1}; case 'cov_prior_entropic', CPD.cov_prior_entropic = args{i+1}; otherwise, error(['invalid argument name ' args{i}]); end end