Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/maximize_params_debug.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = maximize_params(CPD, temp) % MAXIMIZE_PARAMS Set the params of a CPD to their ML values (Gaussian) % CPD = maximize_params(CPD, temperature) % % Temperature is currently ignored. if ~adjustable_CPD(CPD), return; end CPD1 = struct(new_maximize_params(CPD)); CPD2 = struct(old_maximize_params(CPD)); assert(approxeq(CPD1.mean, CPD2.mean)) assert(approxeq(CPD1.cov, CPD2.cov)) assert(approxeq(CPD1.weights, CPD2.weights)) CPD = new_maximize_params(CPD); %%%%%%% function CPD = new_maximize_params(CPD) if CPD.clamped_mean cl_mean = CPD.mean; else cl_mean = []; end if CPD.clamped_cov cl_cov = CPD.cov; else cl_cov = []; end if CPD.clamped_weights cl_weights = CPD.weights; else cl_weights = []; end [ssz psz Q] = size(CPD.weights); prior = repmat(CPD.cov_prior_weight*eye(ssz,ssz), [1 1 Q]); [CPD.mean, CPD.cov, CPD.weights] = ... Mstep_clg('w', CPD.Wsum, 'YY', CPD.WYYsum, 'Y', CPD.WYsum, 'YTY', [], ... 'XX', CPD.WXXsum, 'XY', CPD.WXYsum, 'X', CPD.WXsum, ... 'cov_type', CPD.cov_type, 'clamped_mean', cl_mean, ... 'clamped_cov', cl_cov, 'clamped_weights', cl_weights, ... 'tied_cov', CPD.tied_cov, ... 'cov_prior', prior); %%%%%%%%%%% function CPD = old_maximize_params(CPD) if ~adjustable_CPD(CPD), return; end %assert(approxeq(CPD.nsamples, sum(CPD.Wsum))); assert(~any(isnan(CPD.WXXsum))) assert(~any(isnan(CPD.WXYsum))) assert(~any(isnan(CPD.WYYsum))) [self_size cpsize dpsize] = size(CPD.weights); % Append 1s to the parents, and derive the corresponding cross products. % This is used when estimate the means and weights simultaneosuly, % and when estimatting Sigma. % Let x2 = [x 1]' XY = zeros(cpsize+1, self_size, dpsize); % XY(:,:,i) = sum_l w(l,i) x2(l) y(l)' XX = zeros(cpsize+1, cpsize+1, dpsize); % XX(:,:,i) = sum_l w(l,i) x2(l) x2(l)' YY = zeros(self_size, self_size, dpsize); % YY(:,:,i) = sum_l w(l,i) y(l) y(l)' for i=1:dpsize XY(:,:,i) = [CPD.WXYsum(:,:,i) % X*Y CPD.WYsum(:,i)']; % 1*Y % [x * [x' 1] = [xx' x % 1] x' 1] XX(:,:,i) = [CPD.WXXsum(:,:,i) CPD.WXsum(:,i); CPD.WXsum(:,i)' CPD.Wsum(i)]; YY(:,:,i) = CPD.WYYsum(:,:,i); end w = CPD.Wsum(:); % Set any zeros to one before dividing % This is valid because w(i)=0 => WYsum(:,i)=0, etc w = w + (w==0); if CPD.clamped_mean % Estimating B2 and then setting the last column (the mean) to the clamped mean is *not* equivalent % to estimating B and then adding the clamped_mean to the last column. if ~CPD.clamped_weights B = zeros(self_size, cpsize, dpsize); for i=1:dpsize if det(CPD.WXXsum(:,:,i))==0 B(:,:,i) = 0; else % Eqn 9 in table 2 of TR %B(:,:,i) = CPD.WXYsum(:,:,i)' * inv(CPD.WXXsum(:,:,i)); B(:,:,i) = (CPD.WXXsum(:,:,i) \ CPD.WXYsum(:,:,i))'; end end %CPD.weights = reshape(B, [self_size cpsize dpsize]); CPD.weights = B; end elseif CPD.clamped_weights % KPM 1/25/02 if ~CPD.clamped_mean % ML estimate is just sample mean of the residuals for i=1:dpsize CPD.mean(:,i) = (CPD.WYsum(:,i) - CPD.weights(:,:,i) * CPD.WXsum(:,i)) / w(i); end end else % nothing is clamped, so estimate mean and weights simultaneously B2 = zeros(self_size, cpsize+1, dpsize); for i=1:dpsize if det(XX(:,:,i))==0 % fix by U. Sondhauss 6/27/99 B2(:,:,i)=0; else % Eqn 9 in table 2 of TR %B2(:,:,i) = XY(:,:,i)' * inv(XX(:,:,i)); B2(:,:,i) = (XX(:,:,i) \ XY(:,:,i))'; end CPD.mean(:,i) = B2(:,cpsize+1,i); CPD.weights(:,:,i) = B2(:,1:cpsize,i); end end % Let B2 = [W mu] if cpsize>0 B2(:,1:cpsize,:) = reshape(CPD.weights, [self_size cpsize dpsize]); end B2(:,cpsize+1,:) = reshape(CPD.mean, [self_size dpsize]); % To avoid singular covariance matrices, % we use the regularization method suggested in "A Quasi-Bayesian approach to estimating % parameters for mixtures of normal distributions", Hamilton 91. % If the ML estimate is Sigma = M/N, the MAP estimate is (M+gamma*I) / (N+gamma), % where gamma >=0 is a smoothing parameter (equivalent sample size of I prior) gamma = CPD.cov_prior_weight; if ~CPD.clamped_cov if CPD.cov_prior_entropic % eqn 12 of Brand AI/Stat 99 Z = 1-temp; % When temp > 1, Z is negative, so we are dividing by a smaller % number, ie. increasing the variance. else Z = 0; end if CPD.tied_cov S = zeros(self_size, self_size); % Eqn 2 from table 2 in TR for i=1:dpsize S = S + (YY(:,:,i) - B2(:,:,i)*XY(:,:,i)); end %denom = CPD.nsamples + gamma + Z; denom = CPD.nsamples + Z; S = (S + gamma*eye(self_size)) / denom; if strcmp(CPD.cov_type, 'diag') S = diag(diag(S)); end CPD.cov = repmat(S, [1 1 dpsize]); else for i=1:dpsize % Eqn 1 from table 2 in TR S = YY(:,:,i) - B2(:,:,i)*XY(:,:,i); %denom = w(i) + gamma + Z; denom = w(i) + Z; S = (S + gamma*eye(self_size)) / denom; CPD.cov(:,:,i) = S; end if strcmp(CPD.cov_type, 'diag') for i=1:dpsize CPD.cov(:,:,i) = diag(diag(CPD.cov(:,:,i))); end end end end check_covars = 0; min_covar = 1e-5; if check_covars % prevent collapsing to a point for i=1:dpsize if min(svd(CPD.cov(:,:,i))) < min_covar disp(['resetting singular covariance for node ' num2str(CPD.self)]); CPD.cov(:,:,i) = CPD.init_cov(:,:,i); end end end