Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/gaussian_CPD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function CPD = gaussian_CPD(bnet, self, varargin) % GAUSSIAN_CPD Make a conditional linear Gaussian distrib. % % CPD = gaussian_CPD(bnet, node, ...) will create a CPD with random parameters, % where node is the number of a node in this equivalence class. % To define this CPD precisely, call the continuous (cts) parents (if any) X, % the discrete parents (if any) Q, and this node Y. Then the distribution on Y is: % - no parents: Y ~ N(mu, Sigma) % - cts parents : Y|X=x ~ N(mu + W x, Sigma) % - discrete parents: Y|Q=i ~ N(mu(i), Sigma(i)) % - cts and discrete parents: Y|X=x,Q=i ~ N(mu(i) + W(i) x, Sigma(i)) % % The list below gives optional arguments [default value in brackets]. % (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y) and Q = prod(ns(Q)).) % Parameters will be reshaped to the right size if necessary. % % mean - mu(:,i) is the mean given Q=i [ randn(Y,Q) ] % cov - Sigma(:,:,i) is the covariance given Q=i [ repmat(100*eye(Y,Y), [1 1 Q]) ] % weights - W(:,:,i) is the regression matrix given Q=i [ randn(Y,X,Q) ] % cov_type - if 'diag', Sigma(:,:,i) is diagonal [ 'full' ] % tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i [0] % clamp_mean - if 1, we do not adjust mu(:,i) during learning [0] % clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning [0] % clamp_weights - if 1, we do not adjust W(:,:,i) during learning [0] % cov_prior_weight - weight given to I prior for estimating Sigma [0.01] % cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0] % % e.g., CPD = gaussian_CPD(bnet, i, 'mean', [0; 0], 'clamp_mean', 1) if nargin==0 % This occurs if we are trying to load an object from a file. CPD = init_fields; clamp = 0; CPD = class(CPD, 'gaussian_CPD', generic_CPD(clamp)); return; elseif isa(bnet, 'gaussian_CPD') % This might occur if we are copying an object. CPD = bnet; return; end CPD = init_fields; CPD = class(CPD, 'gaussian_CPD', generic_CPD(0)); args = varargin; ns = bnet.node_sizes; ps = parents(bnet.dag, self); dps = myintersect(ps, bnet.dnodes); cps = myintersect(ps, bnet.cnodes); fam_sz = ns([ps self]); CPD.self = self; CPD.sizes = fam_sz; % Figure out which (if any) of the parents are discrete, and which cts, and how big they are % dps = discrete parents, cps = cts parents CPD.cps = find_equiv_posns(cps, ps); % cts parent index CPD.dps = find_equiv_posns(dps, ps); ss = fam_sz(end); psz = fam_sz(1:end-1); dpsz = prod(psz(CPD.dps)); cpsz = sum(psz(CPD.cps)); % set default params CPD.mean = randn(ss, dpsz); CPD.cov = 100*repmat(eye(ss), [1 1 dpsz]); CPD.weights = randn(ss, cpsz, dpsz); CPD.cov_type = 'full'; CPD.tied_cov = 0; CPD.clamped_mean = 0; CPD.clamped_cov = 0; CPD.clamped_weights = 0; CPD.cov_prior_weight = 0.01; CPD.cov_prior_entropic = 0; nargs = length(args); if nargs > 0 CPD = set_fields(CPD, args{:}); end % Make sure the matrices have 1 dimension per discrete parent. % Bug fix due to Xuejing Sun 3/6/01 CPD.mean = myreshape(CPD.mean, [ss ns(dps)]); CPD.cov = myreshape(CPD.cov, [ss ss ns(dps)]); CPD.weights = myreshape(CPD.weights, [ss cpsz ns(dps)]); % Precompute indices into block structured matrices % to speed up CPD_to_lambda_msg and CPD_to_pi cpsizes = CPD.sizes(CPD.cps); CPD.cps_block_ndx = cell(1, length(cps)); for i=1:length(cps) CPD.cps_block_ndx{i} = block(i, cpsizes); end %%%%%%%%%%% % Learning stuff % expected sufficient statistics CPD.Wsum = zeros(dpsz,1); CPD.WYsum = zeros(ss, dpsz); CPD.WXsum = zeros(cpsz, dpsz); CPD.WYYsum = zeros(ss, ss, dpsz); CPD.WXXsum = zeros(cpsz, cpsz, dpsz); CPD.WXYsum = zeros(cpsz, ss, dpsz); % For BIC CPD.nsamples = 0; switch CPD.cov_type case 'full', % since symmetric %ncov_params = ss*(ss-1)/2; ncov_params = ss*(ss+1)/2; case 'diag', ncov_params = ss; otherwise error(['unrecognized cov_type ' cov_type]); end % params = weights + mean + cov if CPD.tied_cov CPD.nparams = ss*cpsz*dpsz + ss*dpsz + ncov_params; else CPD.nparams = ss*cpsz*dpsz + ss*dpsz + dpsz*ncov_params; end % for speeding up maximize_params CPD.useC = exist('rep_mult'); clamped = CPD.clamped_mean & CPD.clamped_cov & CPD.clamped_weights; CPD = set_clamped(CPD, clamped); %%%%%%%%%%% function CPD = init_fields() % This ensures we define the fields in the same order % no matter whether we load an object from a file, % or create it from scratch. (Matlab requires this.) CPD.self = []; CPD.sizes = []; CPD.cps = []; CPD.dps = []; CPD.mean = []; CPD.cov = []; CPD.weights = []; CPD.clamped_mean = []; CPD.clamped_cov = []; CPD.clamped_weights = []; CPD.cov_type = []; CPD.tied_cov = []; CPD.Wsum = []; CPD.WYsum = []; CPD.WXsum = []; CPD.WYYsum = []; CPD.WXXsum = []; CPD.WXYsum = []; CPD.nsamples = []; CPD.nparams = []; CPD.cov_prior_weight = []; CPD.cov_prior_entropic = []; CPD.useC = []; CPD.cps_block_ndx = [];