Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/smooth_update.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [xsmooth, Vsmooth, VVsmooth_future] = smooth_update(xsmooth_future, Vsmooth_future, ... xfilt, Vfilt, Vfilt_future, VVfilt_future, A, Q, B, u) % One step of the backwards RTS smoothing equations. % function [xsmooth, Vsmooth, VVsmooth_future] = smooth_update(xsmooth_future, Vsmooth_future, ... % xfilt, Vfilt, Vfilt_future, VVfilt_future, A, B, u) % % INPUTS: % xsmooth_future = E[X_t+1|T] % Vsmooth_future = Cov[X_t+1|T] % xfilt = E[X_t|t] % Vfilt = Cov[X_t|t] % Vfilt_future = Cov[X_t+1|t+1] % VVfilt_future = Cov[X_t+1,X_t|t+1] % A = system matrix for time t+1 % Q = system covariance for time t+1 % B = input matrix for time t+1 (or [] if none) % u = input vector for time t+1 (or [] if none) % % OUTPUTS: % xsmooth = E[X_t|T] % Vsmooth = Cov[X_t|T] % VVsmooth_future = Cov[X_t+1,X_t|T] %xpred = E[X(t+1) | t] if isempty(B) xpred = A*xfilt; else xpred = A*xfilt + B*u; end Vpred = A*Vfilt*A' + Q; % Vpred = Cov[X(t+1) | t] J = Vfilt * A' * inv(Vpred); % smoother gain matrix xsmooth = xfilt + J*(xsmooth_future - xpred); Vsmooth = Vfilt + J*(Vsmooth_future - Vpred)*J'; VVsmooth_future = VVfilt_future + (Vsmooth_future - Vfilt_future)*inv(Vfilt_future)*VVfilt_future;