Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/sample_lds.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [x,y] = sample_lds(F, H, Q, R, init_state, T, models, G, u) % SAMPLE_LDS Simulate a run of a (switching) stochastic linear dynamical system. % [x,y] = switching_lds_draw(F, H, Q, R, init_state, models, G, u) % % x(t+1) = F*x(t) + G*u(t) + w(t), w ~ N(0, Q), x(0) = init_state % y(t) = H*x(t) + v(t), v ~ N(0, R) % % Input: % F(:,:,i) - the transition matrix for the i'th model % H(:,:,i) - the observation matrix for the i'th model % Q(:,:,i) - the transition covariance for the i'th model % R(:,:,i) - the observation covariance for the i'th model % init_state(:,i) - the initial mean for the i'th model % T - the num. time steps to run for % % Optional inputs: % models(t) - which model to use at time t. Default = ones(1,T) % G(:,:,i) - the input matrix for the i'th model. Default = 0. % u(:,t) - the input vector at time t. Default = zeros(1,T) % % Output: % x(:,t) - the hidden state vector at time t. % y(:,t) - the observation vector at time t. if ~iscell(F) F = num2cell(F, [1 2]); H = num2cell(H, [1 2]); Q = num2cell(Q, [1 2]); R = num2cell(R, [1 2]); end M = length(F); %T = length(models); if nargin < 7, models = ones(1,T); end if nargin < 8, G = num2cell(repmat(0, [1 1 M])); u = zeros(1,T); end [os ss] = size(H{1}); state_noise_samples = cell(1,M); obs_noise_samples = cell(1,M); for i=1:M state_noise_samples{i} = sample_gaussian(zeros(length(Q{i}),1), Q{i}, T)'; obs_noise_samples{i} = sample_gaussian(zeros(length(R{i}),1), R{i}, T)'; end x = zeros(ss, T); y = zeros(os, T); m = models(1); x(:,1) = init_state(:,m); y(:,1) = H{m}*x(:,1) + obs_noise_samples{m}(:,1); for t=2:T m = models(t); x(:,t) = F{m}*x(:,t-1) + G{m}*u(:,t-1) + state_noise_samples{m}(:,t); y(:,t) = H{m}*x(:,t) + obs_noise_samples{m}(:,t); end