Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/kalman_update.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [xnew, Vnew, loglik, VVnew] = kalman_update(A, C, Q, R, y, x, V, varargin) % KALMAN_UPDATE Do a one step update of the Kalman filter % [xnew, Vnew, loglik] = kalman_update(A, C, Q, R, y, x, V, ...) % % INPUTS: % A - the system matrix % C - the observation matrix % Q - the system covariance % R - the observation covariance % y(:) - the observation at time t % x(:) - E[X | y(:, 1:t-1)] prior mean % V(:,:) - Cov[X | y(:, 1:t-1)] prior covariance % % OPTIONAL INPUTS (string/value pairs [default in brackets]) % 'initial' - 1 means x and V are taken as initial conditions (so A and Q are ignored) [0] % 'u' - u(:) the control signal at time t [ [] ] % 'B' - the input regression matrix % % OUTPUTS (where X is the hidden state being estimated) % xnew(:) = E[ X | y(:, 1:t) ] % Vnew(:,:) = Var[ X(t) | y(:, 1:t) ] % VVnew(:,:) = Cov[ X(t), X(t-1) | y(:, 1:t) ] % loglik = log P(y(:,t) | y(:,1:t-1)) log-likelihood of innovatio % set default params u = []; B = []; initial = 0; args = varargin; for i=1:2:length(args) switch args{i} case 'u', u = args{i+1}; case 'B', B = args{i+1}; case 'initial', initial = args{i+1}; otherwise, error(['unrecognized argument ' args{i}]) end end % xpred(:) = E[X_t+1 | y(:, 1:t)] % Vpred(:,:) = Cov[X_t+1 | y(:, 1:t)] if initial if isempty(u) xpred = x; else xpred = x + B*u; end Vpred = V; else if isempty(u) xpred = A*x; else xpred = A*x + B*u; end Vpred = A*V*A' + Q; end e = y - C*xpred; % error (innovation) n = length(e); ss = length(A); S = C*Vpred*C' + R; Sinv = inv(S); ss = length(V); loglik = gaussian_prob(e, zeros(1,length(e)), S, 1); K = Vpred*C'*Sinv; % Kalman gain matrix % If there is no observation vector, set K = zeros(ss). xnew = xpred + K*e; Vnew = (eye(ss) - K*C)*Vpred; VVnew = (eye(ss) - K*C)*A*V;