Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/Kalman/kalman_forward_backward.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% KALMAN_FORWARD_BACKWARD Forward Backward Propogation in Information Form % % % Note : % % M file accompanying my technical note % % A Technique for Painless Derivation of Kalman Filtering Recursions % % available from http://www.mbfys.kun.nl/~cemgil/papers/painless-kalman.ps % % Uses : % Change History : % Date Time Prog Note % 07-Jun-2001 2:24 PM ATC Created under MATLAB 5.3.1.29215a (R11.1) % ATC = Ali Taylan Cemgil, % SNN - University of Nijmegen, Department of Medical Physics and Biophysics % e-mail : cemgil@mbfys.kun.nl A = [1 1;0 1]; C = [1 0]; Q = eye(2)*0.01^2; R = 0.001^2; mu1 = [0;1]; P1 = 3*Q; inv_Q = inv(Q); inv_R = inv(R); y = [0 1.1 2 2.95 3.78]; T = length(y); L = size(Q,1); %%%%% Forward message Passing h_f = zeros(L, T); K_f = zeros(L, L, T); g_f = zeros(1, T); h_f_pre = zeros(L, T); K_f_pre = zeros(L, L, T); g_f_pre = zeros(1, T); K_f_pre(:, :, 1) = inv(P1); h_f_pre(:,1) = K_f_pre(:, :, 1)*mu1; g_f_pre(1) = -0.5*log(det(2*pi*P1)) - 0.5*mu1'*inv(P1)*mu1; for i=1:T, h_f(:,i) = h_f_pre(:,i) + C'*inv_R*y(:,i); K_f(:,:,i) = K_f_pre(:,:,i) + C'*inv_R*C; g_f(i) = g_f_pre(i) -0.5*log(det(2*pi*R)) - 0.5*y(:,i)'*inv_R*y(:,i); if i<T, M = inv(A'*inv_Q*A + K_f(:,:,i)); h_f_pre(:,i+1) = inv_Q*A*M*h_f(:,i); K_f_pre(:,:,i+1) = inv_Q - inv_Q*A*M*A'*inv_Q; g_f_pre(i+1) = g_f(i) -0.5*log(det(2*pi*Q)) + 0.5*log(det(2*pi*M)) + 0.5*h_f(:,i)'*M*h_f(:,i); end; end %%% Backward Message Passing h_b = zeros(L, T); K_b = zeros(L, L, T); g_b = zeros(1, T); h_b_post = zeros(L, T); K_b_post = zeros(L, L, T); g_b_post = zeros(1, T); for i=T:-1:1, h_b(:,i) = h_b_post(:,i) + C'*inv_R*y(:,i); K_b(:,:,i) = K_b_post(:,:,i) + C'*inv_R*C; g_b(i) = g_b_post(i) - 0.5*log(det(2*pi*R)) - 0.5*y(:,i)'*inv_R*y(:,i); if i>1, M = inv(inv_Q + K_b(:,:,i)); h_b_post(:,i-1) = A'*inv(Q)*M*h_b(:,i); K_b_post(:,:,i-1) = A'*inv_Q*(Q - M)*inv_Q*A; g_b_post(i-1) = g_b(i) -0.5*log(det(2*pi*Q)) + 0.5*log(det(2*pi*M)) + 0.5*h_b(:,i)'*M*h_b(:,i); end; end; %%%% Smoothed Estimates mu = zeros(size(h_f)); Sig = zeros(size(K_f)); g = zeros(size(g_f)); lalpha = zeros(size(g_f)); for i=1:T, Sig(:,:,i) = inv(K_b_post(:,:,i) + K_f(:,:,i)); mu(:,i) = Sig(:,:,i)*(h_b_post(:,i) + h_f(:,i)); g(i) = g_b_post(i) + g_f(:,i); lalpha(i) = g(i) + 0.5*log(det(2*pi*Sig(:,:,i))) + 0.5*mu(:,i)'*inv(Sig(:,:,i))*mu(:,i); end;