Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMtools/subsets.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [T, bitv] = subsets(S, U, L, sorted, N) % SUBSETS Create a set of all the subsets of S which have cardinality <= U and >= L % T = subsets(S, U, L) % U defaults to length(S), L defaults to 0. % So subsets(S) generates the powerset of S. % % Example: % T = subsets(1:4, 2, 1) % T{:} = 1, 2, [1 2], 3, [1 3], [2 3], 4, [1 4], [2 4], [3 4] % % T = subsets(S, U, L, sorted) % If sorted=1, return the subsets in increasing size % % Example: % T = subsets(1:4, 2, 1, 1) % T{:} = 1, 2, 3, 4, [1 2], [1 3], [2 3], [1 4], [2 4], [3 4] % % [T, bitv] = subsets(S, U, L, sorted, N) % Row i of bitv is a bit vector representation of T{i}, % where bitv has N columns (representing 1:N). % N defaults to max(S). % % Example: % [T,bitv] = subsets(2:4, 2^3, 0, 0, 5) % T{:} = [], 2, 3, [2 3], 4, [2 4], [3 4], [2 3 4] % bitv= % 0 0 0 0 0 % 0 1 0 0 0 % 0 0 1 0 0 % 0 1 1 0 0 % 0 0 0 1 0 % 0 1 0 1 0 % 0 0 1 1 0 % 0 1 1 1 0 n = length(S); if nargin < 2, U = n; end if nargin < 3, L = 0; end if nargin < 4, sorted = 0; end if nargin < 5, N = max(S); end bits = ind2subv(2*ones(1,n), 1:2^n)-1; sm = sum(bits,2); masks = bits((sm <= U) & (sm >= L), :); m = size(masks, 1); T = cell(1, m); for i=1:m s = S(find(masks(i,:))); T{i} = s; end if sorted T = sortcell(T); end bitv = zeros(m, N); bitv(:, S) = masks;