Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMtools/chi2inv.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function x = chi2inv(p,v); %CHI2INV Inverse of the chi-square cumulative distribution function (cdf). % X = CHI2INV(P,V) returns the inverse of the chi-square cdf with V % degrees of freedom at the values in P. The chi-square cdf with V % degrees of freedom, is the gamma cdf with parameters V/2 and 2. % % The size of X is the common size of P and V. A scalar input % functions as a constant matrix of the same size as the other input. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 26.4. % [2] E. Kreyszig, "Introductory Mathematical Statistics", % John Wiley, 1970, section 10.2 (page 144) % Copyright 1993-2002 The MathWorks, Inc. % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:30:30 $ if nargin < 2, error('Requires two input arguments.'); end [errorcode p v] = distchck(2,p,v); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Call the gamma inverse function. x = gaminv(p,v/2,2); % Return NaN if the degrees of freedom is not positive. k = (v <= 0); if any(k(:)) x(k) = NaN; end