Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_prob_test.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function test_eval_pdf_cond_mixgauss() %Q = 10; M = 100; d = 20; T = 500; Q = 2; M = 3; d = 4; T = 5; mu = rand(d,Q,M); data = randn(d,T); %mixmat = mk_stochastic(rand(Q,M)); mixmat = mk_stochastic(ones(Q,M)); % tied scalar Sigma = 0.01; mu = rand(d,M,Q); weights = mixmat'; N = M*ones(1,Q); tic; [B, B2, D] = parzen(data, mu, Sigma, N, weights); toc tic; [BC, B2C, DC] = parzenC(data, mu, Sigma, N); toc approxeq(B,BC) B2C = reshape(B2C,[M Q T]); approxeq(B2,B2C) DC = reshape(DC,[M Q T]); approxeq(D,DC) return tic; [B, B2] = eval_pdf_cond_mixgauss(data, mu, Sigma, mixmat); toc tic; C = eval_pdf_cond_parzen(data, mu, Sigma); toc approxeq(B,C) return; mu = reshape(mu, [d Q*M]); data = mk_unit_norm(data); mu = mk_unit_norm(mu); tic; D = 2 -2*(data'*mu); toc % avoid an expensive repmat tic; D2 = sqdist(data, mu); toc approxeq(D,D2) % D(t,m) = sq dist between data(:,t) and mu(:,m) mu = reshape(mu, [d Q*M]); D = dist2(data', mu'); %denom = (2*pi)^(d/2)*sqrt(abs(det(C))); denom = (2*pi*Sigma)^(d/2); % sqrt(det(2*pi*Sigma)) numer = exp(-0.5/Sigma * D'); B2 = numer / denom; B2 = reshape(B2, [Q M T]); tic; B = squeeze(sum(B2 .* repmat(mixmat, [1 1 T]), 2)); toc tic A = zeros(Q,T); for q=1:Q A(q,:) = mixmat(q,:) * squeeze(B2(q,:,:)); % sum over m end toc assert(approxeq(A,B)) tic A = zeros(Q,T); for t=1:T A(:,t) = sum(mixmat .* B2(:,:,t), 2); % sum over m end toc assert(approxeq(A,B)) mu = reshape(mu, [d Q M]); B3 = zeros(Q,M,T); for j=1:Q for k=1:M B3(j,k,:) = gaussian_prob(data, mu(:,j,k), Sigma*eye(d)); end end assert(approxeq(B2, B3)) logB4 = -(d/2)*log(2*pi*Sigma) - (1/(2*Sigma))*D; % det(sigma*I) = sigma^d B4 = reshape(exp(logB4), [Q M T]); assert(approxeq(B4, B3)) % tied cov matrix Sigma = rand_psd(d,d); mu = reshape(mu, [d Q*M]); D = sqdist(data, mu, inv(Sigma))'; denom = sqrt(det(2*pi*Sigma)); numer = exp(-0.5 * D); B2 = numer / denom; B2 = reshape(B2, [Q M T]); mu = reshape(mu, [d Q M]); B3 = zeros(Q,M,T); for j=1:Q for k=1:M B3(j,k,:) = gaussian_prob(data, mu(:,j,k), Sigma); end end assert(approxeq(B2, B3)) logB4 = -(d/2)*log(2*pi) - 0.5*logdet(Sigma) - 0.5*D; B4 = reshape(exp(logB4), [Q M T]); assert(approxeq(B4, B3))