Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/gamma_sample.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function r = gamrnd(a,b,m,n); %GAMRND Random matrices from gamma distribution. % R = GAMRND(A,B) returns a matrix of random numbers chosen % from the gamma distribution with parameters A and B. % The size of R is the common size of A and B if both are matrices. % If either parameter is a scalar, the size of R is the size of the other % parameter. Alternatively, R = GAMRND(A,B,M,N) returns an M by N matrix. % % Some references refer to the gamma distribution % with a single parameter. This corresponds to GAMRND % with B = 1. (See Devroye, pages 401-402.) % GAMRND uses a rejection or an inversion method depending on the % value of A. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 % B.A. Jones 2-1-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $ if nargin < 2, error('Requires at least two input arguments.'); end if nargin == 2 [errorcode rows columns] = rndcheck(2,2,a,b); end if nargin == 3 [errorcode rows columns] = rndcheck(3,2,a,b,m); end if nargin == 4 [errorcode rows columns] = rndcheck(4,2,a,b,m,n); end if errorcode > 0 error('Size information is inconsistent.'); end % Initialize r to zero. lth = rows*columns; r = zeros(lth,1); a = a(:); b = b(:); scalara = (length(a) == 1); if scalara a = a*ones(lth,1); end scalarb = (length(b) == 1); if scalarb b = b*ones(lth,1); end % If a == 1, then gamma is exponential. (Devroye, page 405). k = find(a == 1); if any(k) r(k) = -b(k) .* log(rand(size(k))); end k = find(a < 1 & a > 0); % (Devroye, page 418 Johnk's generator) if any(k) c = zeros(lth,1); d = zeros(lth,1); c(k) = 1 ./ a(k); d(k) = 1 ./ (1 - a(k)); accept = k; while ~isempty(accept) u = rand(size(accept)); v = rand(size(accept)); x = u .^ c(accept); y = v .^ d(accept); k1 = find((x + y) <= 1); if ~isempty(k1) e = -log(rand(size(k1))); r(accept(k1)) = e .* x(k1) ./ (x(k1) + y(k1)); accept(k1) = []; end end r(k) = r(k) .* b(k); end % Use a rejection method for a > 1. k = find(a > 1); % (Devroye, page 410 Best's algorithm) bb = zeros(size(a)); c = bb; if any(k) bb(k) = a(k) - 1; c(k) = 3 * a(k) - 3/4; accept = k; count = 1; while ~isempty(accept) m = length(accept); u = rand(m,1); v = rand(m,1); w = u .* (1 - u); y = sqrt(c(accept) ./ w) .* (u - 0.5); x = bb(accept) + y; k1 = find(x >= 0); if ~isempty(k1) z = 64 * (w .^ 3) .* (v .^ 2); k2 = (z(k1) <= (1 - 2 * (y(k1) .^2) ./ x(k1))); k3 = k1(find(k2)); r(accept(k3)) = x(k3); k4 = k1(find(~k2)); k5 = k4(find(log(z(k4)) <= (2*(bb(accept(k4)).*log(x(k4)./bb(accept(k4)))-y(k4))))); r(accept(k5)) = x(k5); omit = [k3; k5]; accept(omit) = []; end end r(k) = r(k) .* b(k); end % Return NaN if a or b is not positive. r(b <= 0 | a <= 0) = NaN; r = reshape(r,rows,columns);