Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/chisquared_table.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function X2 = chisquared_table(P,v) %CHISQUARED_TABLE computes the "percentage points" of the %chi-squared distribution, as in Abramowitz & Stegun Table 26.8 % X2 = CHISQUARED_TABLE( P, v ) returns the value of chi-squared % corresponding to v degrees of freedom and probability P. % P is the probability that the sum of squares of v unit-variance % normally-distributed random variables is <= X2. % P and v may be matrices of the same size size, or either % may be a scalar. % % e.g., to find the 95% confidence interval for 2 degrees % of freedom, use CHISQUARED_TABLE( .95, 2 ), yielding 5.99, % in agreement with Abramowitz & Stegun's Table 26.8 % % This result can be checked through the function % CHISQUARED_PROB( 5.99, 2 ), yielding 0.9500 % % The familiar 1.96-sigma confidence bounds enclosing 95% of % a 1-D gaussian is found through % sqrt( CHISQUARED_TABLE( .95, 1 )), yielding 1.96 % % See also CHISQUARED_PROB % %Peter R. Shaw, WHOI %Leslie Rosenfeld, MBARI % References: Press et al., Numerical Recipes, Cambridge, 1986; % Abramowitz & Stegun, Handbook of Mathematical Functions, Dover, 1972. % Peter R. Shaw, Woods Hole Oceanographic Institution % Woods Hole, MA 02543 pshaw@whoi.edu % Leslie Rosenfeld, MBARI % Last revision: Peter Shaw, Oct 1992: fsolve with version 4 % ** Calls function CHIAUX ** % Computed using the Incomplete Gamma function, % as given by Press et al. (Recipes) eq. (6.2.17) [mP,nP]=size(P); [mv,nv]=size(v); if mP~=mv | nP~=nv, if mP==1 & nP==1, P=P*ones(mv,nv); elseif mv==1 & nv==1, v=v*ones(mP,nP); else error('P and v must be the same size') end end [m,n]=size(P); X2 = zeros(m,n); for i=1:m, for j=1:n, if v(i,j)<=10, x0=P(i,j)*v(i,j); else x0=v(i,j); end % Note: "old" and "new" calls to fsolve may or may not follow % Matlab version 3.5 -> version 4 (so I'm keeping the old call around...) % X2(i,j) = fsolve('chiaux',x0,zeros(16,1),[v(i,j),P(i,j)]); %(old call) X2(i,j) = fsolve('chiaux',x0,zeros(16,1),[],[v(i,j),P(i,j)]); end end