Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/transmat_train_observed.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [transmat, initState] = transmat_train_observed(labels, nstates, varargin) % transmat_train_observed ML estimation from fully observed data % function [transmat, initState] = transmat_train_observed(labels, nstates, varargin) % % If all sequences have the same length % labels(ex,t) % If sequences have different lengths, we use cell arrays % labels{ex}(t) [dirichletPriorWeight, mkSymmetric, other] = process_options(... varargin, 'dirichletPriorWeight', 0, 'mkSymmetric', 0); if ~iscell(labels) [numex T] = size(labels); if T==1 labels = labels'; end %fprintf('T=%d, numex=%d\n', T, numex); labels = num2cell(labels,2); % each row gets its own cell end numex = length(labels); counts = zeros(nstates, nstates); counts1 = zeros(nstates,1); for s=1:numex labs = labels{s}; labs = labs(:)'; dat = [labs(1:end-1); labs(2:end)]; counts = counts + compute_counts(dat, [nstates nstates]); q = labs(1); counts1(q) = counts1(q) + 1; end pseudo_counts = dirichletPriorWeight*ones(nstates, nstates); if mkSymmetric counts = counts + counts'; end transmat = mk_stochastic(counts + pseudo_counts); initState = normalize(counts1 + dirichletPriorWeight*ones(nstates,1));