Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/pomdp_sample.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [obs, hidden] = pomdp_sample(initial_prob, transmat, obsmat, act) % SAMPLE_POMDP Generate a random sequence from a Partially Observed Markov Decision Process. % [obs, hidden] = sample_pomdp(prior, transmat, obsmat, act) % % Inputs: % prior(i) = Pr(Q(1)=i) % transmat{a}(i,j) = Pr(Q(t)=j | Q(t-1)=i, A(t)=a) % obsmat(i,k) = Pr(Y(t)=k | Q(t)=i) % act(a) = A(t), so act(1) is ignored % % Output: % obs and hidden are vectors of length T=length(act) len = length(act); hidden = mdp_sample(initial_prob, transmat, act); obs = zeros(1, len); for t=1:len obs(t) = sample_discrete(obsmat(hidden(t),:)); end