Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/gausshmm_train_observed.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [initState, transmat, mu, Sigma] = gausshmm_train_observed(obsData, hiddenData, ... nstates, varargin) % GAUSSHMM_TRAIN_OBSERVED Estimate params of HMM with Gaussian output from fully observed sequences % [initState, transmat, mu, Sigma] = gausshmm_train_observed(obsData, hiddenData, nstates,...) % % INPUT % If all sequences have the same length % obsData(:,t,ex) % hiddenData(ex,t) - must be ROW vector if only one sequence % If sequences have different lengths, we use cell arrays % obsData{ex}(:,t) % hiddenData{ex}(t) % % Optional argumnets % dirichletPriorWeight - for smoothing transition matrix counts % % Optional parameters from mixgauss_Mstep: % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % 'tied_cov' - 1 (Sigma) or 0 (Sigma_i) [0] % 'clamped_cov' - pass in clamped value, or [] if unclamped [ [] ] % 'clamped_mean' - pass in clamped value, or [] if unclamped [ [] ] % 'cov_prior' - Lambda_i, added to YY(:,:,i) [0.01*eye(d,d,Q)] % % Output % mu(:,q) % Sigma(:,:,q) [dirichletPriorWeight, other] = process_options(... varargin, 'dirichletPriorWeight', 0); [transmat, initState] = transmat_train_observed(hiddenData, nstates, ... 'dirichletPriorWeight', dirichletPriorWeight); % convert to obsData(:,t*nex) if ~iscell(obsData) [D T Nex] = size(obsData); obsData = reshape(obsData, D, T*Nex); else obsData = cat(2, obsData{:}); hiddenData = cat(2,hiddenData{:}); end [mu, Sigma] = condgaussTrainObserved(obsData, hiddenData(:), nstates, varargin{:});