Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/dhmm_em_demo.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
O = 3; Q = 2; % "true" parameters prior0 = normalise(rand(Q,1)); transmat0 = mk_stochastic(rand(Q,Q)); obsmat0 = mk_stochastic(rand(Q,O)); % training data T = 5; nex = 10; data = dhmm_sample(prior0, transmat0, obsmat0, T, nex); % initial guess of parameters prior1 = normalise(rand(Q,1)); transmat1 = mk_stochastic(rand(Q,Q)); obsmat1 = mk_stochastic(rand(Q,O)); % improve guess of parameters using EM [LL, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', 5); LL % use model to compute log likelihood loglik = dhmm_logprob(data, prior2, transmat2, obsmat2) % log lik is slightly different than LL(end), since it is computed after the final M step