Mercurial > hg > camir-aes2014
view reproduce_AES53rd/rerun_gradient_table3/gradient_table3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% cr_: training correct % cr : testing correct feature_file = 'rel_music_raw_features+simdata_ISMIR12'; vars = whos('-file', feature_file); A = load(feature_file,vars(1).name,vars(2).name,vars(3).name,vars(4).name); raw_features = A.(vars(1).name); indices = A.(vars(2).name); tst_inx = A.(vars(3).name); trn_inx = A.(vars(4).name); % % figure(1); imagesc(raw_features);colorbar; mod = load('res_48'); features = logistic(raw_features*mod.W_max{1} + repmat(mod.hB_max{1},size(raw_features,1),1)); % figure(2); imagesc(features);colorbar; num_case = size(trn_inx,1); [trnd_12 trnd_13] = subspace_distances(trn_inx,features,indices,1,1); [tstd_12 tstd_13] = subspace_distances(tst_inx,features,indices,1,1); cr_ = 0; % correct rate for training cr = 0; % correct rate for testing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% CODE HERE %% %[Ws cr_] = gradient_ascent(trnd_12,trnd_13,0.1,0.1,0.00002); %eNum = 10 [Ws cr_] = gradient_ascent(trnd_12,trnd_13,0.05,0.01,0.00002); for i = 1:num_case cr = cr + sum((tstd_13{i}-tstd_12{i})*Ws{i}' > 0, 1)/size(tstd_12{i},1); end cr = cr/num_case; %% Check the result fprintf('Gradient RBM Test / Train Result=%f / %f\n',cr*100,cr_*100); %fprintf('Training=%f Testing=%f\n',cr_,cr);