Mercurial > hg > camir-aes2014
view reproduce_AES53rd/rerun_figure4.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% --- % This script trains similarity measures and evaluates the % impact of the number of hidden states as displayed in figure 4 of % % Feature Preprocessing with RBMs for Music Similarity Learning % Son N. Tran, Daniel Wolff, Tillman Weyde, Artur Garcez, AES53rd % conference % % please note that the RBM training is a probabilistic process, and % thus the papers' results can only be reproduced approximately with % some iterations of this script, and selection of RBMs according to % their training set performance. % This takes considerable time, and for the sake of usability of this script % is left our. % It is exemplarily done for hidnum = 1000 in the script "table 1" in the % correpsonding folder. % % % The train and test performances are plotted in a figure % % For convenicence, The precomputed RBM features are stored in the files % accompaining this script. % In order to compute new SVM features, delete these files. % --- global globalvars; globalvars.debug = 3; % --- % vary feature parameters of mixed features % --- ftype = 'MTTMixedFeatureSonRBM'; %'MTTMixedFeatureStober11Genre'; fparams_all = struct(... ... % --- ... % these are SONfeatRaw parameters ... % --- 'son_filename',{{'rel_music_raw_features+simdata_ISMIR12.mat'}}, ... 'son_conf', 2, ... ... % --- ... % Following: RBM params ... % --- 'norm_pre_rbm', 0, ... % norm before RBM? 'norm_post_rbm',0, ... % norm before RBM? 'rbm_hidNum',[30 50 100 500 1000], ... % number of hidden units % 500 'rbm_eNum', 100, ... 'rbm_bNum', 1, ... 'rbm_gNum', 1, ... 'rbm_lrate1' , [0.05], ... % initial learning rate % 0.01 'rbm_lrate2', [0.17], ... % learning rate, %0.05 'rbm_momentum', [0.1], ... % 0.5 'rbm_cost', [0.00002], ... % cost function 'rbm_N', 50, ... 'rbm_MAX_INC', 10 ... ); % --- % vary parameters for svmlight % --- trainparams_all = struct(... 'C', [1], ...% 'weighted', [0], ... 'dataset', {{'comp_partBinData_ISMIR12_01.mat'}}, ... 'inctrain', 0 ... ... % this optional ... %'deltafun', {{'conv_subspace_delta'}}, ... ... %'deltafun_params', {{{[1],[0]},{[5],[1]},{[10],[1]},{[20],[1]},{[30],[1]},{[50],[1]},{[70],[1]}}} ... % normalisation improves results ); % set training function trainfun = @svmlight_wrapper; % create test directory akt_dir = migrate_to_test_dir(); % call eval out = test_generic_features_parameters_crossval... (fparams_all, trainparams_all, trainfun, ftype); % get number of Hidden Units fparams = [out(:).fparams]; hidNum = [fparams(:).rbm_hidNum]; [hidNum,idx] =sort(hidNum); % get sorted test data results svm_test_results = [out(idx).mean_ok_test]; svm_test_results = svm_test_results(1,:); % get sorted train data results svm_train_results = [out(idx).mean_ok_train]; svm_train_results = svm_train_results(1,:); % --- % plot results % --- figure; plot(hidNum,svm_train_results,'r-'); hold on plot(hidNum,svm_test_results,'b'); legend('Training','Test'); title ('Figure 4: SVM results for different hidNum');