diff toolboxes/MIRtoolbox1.3.2/somtoolbox/som_vis_coords.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/MIRtoolbox1.3.2/somtoolbox/som_vis_coords.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,153 @@
+function unit_coord=som_vis_coords(lattice, msize)
+
+%SOM_VIS_COORDS Unit coordinates used in visualizations.
+% 
+% Co = som_vis_coords(lattice, msize)
+%
+%  Co = som_vis_coords('hexa',[10 7])
+%  Co = som_vis_coords('rectU',[10 7])
+%
+%  Input and output arguments: 
+%   lattice   (string) 'hexa', 'rect', 'hexaU' or 'rectU'
+%   msize     (vector) grid size in a 1x2 vector    
+%
+%   Co        (matrix) Mx2 matrix of unit coordinates, where 
+%               M=prod(msize) for 'hexa' and 'rect', and 
+%               M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU'
+%
+% This function calculates the coordinates of map units on a 'sheet'
+% shaped map with either 'hexa' or 'rect' lattice as used in the
+% visualizations. Note that this slightly different from the
+% coordinates provided by SOM_UNIT_COORDS function. 
+%
+% 'rectU' and 'hexaU' gives the coordinates of both units and the
+% connections for u-matrix visualizations.
+%
+% For more help, try 'type som_vis_coords' or check out online documentation.
+% See also SOM_UNIT_COORDS, SOM_UMAT, SOM_CPLANE, SOM_GRID.
+
+%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+% PURPOSE 
+% 
+% Returns coordinates of the map units for map visualization
+%
+% SYNTAX
+%
+%  Co = som_vis_coords(lattice, msize)
+%
+% DESCRIPTION
+%
+% This function calculates the coordinates of map units in 'hexa' and
+% 'rect' lattices in 'sheet' shaped map for visualization purposes. It
+% differs from SOM_UNIT_COORDS in the sense that hexagonal lattice is
+% calculated in a "wrong" way in order to get integer coordinates for
+% the units. Another difference is that it may be used to calculate
+% the coordinates of units _and_ the center points of the lines
+% connecting them (edges) by using 'hexaU' or 'rectU' for lattice. 
+% This property may be used for drawing u-matrices.
+%
+% The unit number 1 is set to (ij) coordinates (1,1)+shift
+%                 2                            (2,1)+shift
+%
+%  ... columnwise
+% 
+%             n-1th                        (n1-1,n2)+shift
+%             nth                            (n1,n2)+shift
+%
+% where grid size = [n1 n2] and shift is zero, except for 
+% the even lines of 'hexa' lattice, for which it is +0.5.
+%
+% For 'rectU' and 'hexaU' the unit coordinates are the same and the
+% coordinates for connections are set according to these. In this case
+% the ordering of the coordinates is the following:
+%   let
+%     U  = som_umat(sMap); U=U(:); % make U a column vector
+%     Uc = som_vis_coords(sMap.topol.lattice, sMap.topol.msize); 
+%   now the kth row of matrix Uc, i.e. Uc(k,:), contains the coordinates 
+%   for value U(k). 
+%
+% REQUIRED INPUT ARGUMENTS 
+%
+%  lattice  (string) The local topology of the units: 
+%                    'hexa', 'rect', 'hexaU' or 'rectU'
+%  msize    (vector) size 1x2, defining the map grid size. 
+%                    Notice that only 2-dimensional grids
+%                    are allowed.
+%
+% OUTPUT ARGUMENTS
+% 
+%  Co       (matrix) size Mx2, giving the coordinates for each unit.
+%                    M=prod(msize) for 'hexa' and 'rect', and 
+%                    M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU'
+%
+% FEATURES
+% 
+% Only 'sheet' shaped maps are considered. If coordinates for 'toroid'
+% or 'cyl' topologies are required, you must use SOM_UNIT_COORDS
+% instead.
+%
+% EXAMPLES
+%
+% Though this is mainly a subroutine for visualizations it may be
+% used, e.g., in the following manner:
+%
+% % This makes a hexagonal lattice, where the units are rectangular
+% % instead of hexagons.
+%    som_cplane('rect',som_vis_coords('hexa',[10 7]),'none');
+%
+% % Let's make a map and calculate a u-matrix: 
+%    sM=som_make(data,'msize',[10 7],'lattice','hexa');
+%    u=som_umat(sM); u=u(:);
+% % Now, these produce equivalent results:
+%    som_cplane('hexaU',[10 7],u);
+%    som_cplane(vis_patch('hexa')/2,som_vis_coords('hexaU',[10 7]),u);
+%
+% SEE ALSO
+%
+% som_grid         Visualization of a SOM grid
+% som_cplane       Visualize a 2D component plane, u-matrix or color plane
+% som_barplane     Visualize the map prototype vectors as bar diagrams
+% som_plotplane    Visualize the map prototype vectors as line graphs
+% som_pieplane     Visualize the map prototype vectors as pie charts
+% som_unit_coords  Locations of units on the SOM grid
+
+% Copyright (c) 1999-2000 by the SOM toolbox programming team.
+% http://www.cis.hut.fi/projects/somtoolbox/             
+
+% Version 2.0beta Johan 201099 juuso 261199
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+if ~vis_valuetype(msize,{'1x2'}),
+  error('msize must be a 1x2 vector.')
+end
+
+if vis_valuetype(lattice,{'string'})
+  switch lattice
+  case {'hexa', 'rect'}
+    munits=prod(msize);
+    unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)';
+    unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1);
+    if strcmp(lattice,'hexa')
+      % Move even rows by .5
+      d=rem(unit_coord(:,2),2) == 0;   
+      unit_coord(d,1)=unit_coord(d,1)+.5;
+    end
+  case {'hexaU','rectU'}
+    msize=2*msize-1; munits=prod(msize);
+    unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)';
+    unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1);
+    if strcmp(lattice,'hexaU')
+      d=rem(unit_coord(:,2),2) == 0;   
+      unit_coord(d,1)=unit_coord(d,1)+.5;
+      d=rem(unit_coord(:,2)+1,4) == 0; 
+      unit_coord(d,1)=unit_coord(d,1)+1;
+    end
+    unit_coord=unit_coord/2+.5;
+  otherwise
+    error([ 'Unknown lattice ''' lattice '''.']);
+  end
+else
+  error('Lattice must be a string.');
+end