diff toolboxes/MIRtoolbox1.3.2/MIRToolbox/mireventdensity.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/MIRtoolbox1.3.2/MIRToolbox/mireventdensity.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,97 @@
+function varargout = mireventdensity(x,varargin)
+%   e = mireventdensity(x) estimate the mean frequency of events (i.e., how
+%       many note onsets per second) in the temporal data x.
+
+%   Optional arguments: Option1, Option2
+% Tuomas Eerola, 14.08.2008
+%
+        normal.type = 'String';
+        normal.choice = {'Option1','Option2'};
+        normal.default = 'Option1';
+    option.normal = normal;
+
+        frame.key = 'Frame';
+        frame.type = 'Integer';
+        frame.number = 2;
+        frame.default = [0 0];
+        frame.keydefault = [10 1];
+    option.frame = frame;
+    
+specif.option = option;
+
+specif.defaultframelength = 1.00;
+specif.defaultframehop = 0.5;
+
+%specif.eachchunk = 'Normal';
+specif.combinechunk = {'Average','Concat'};
+
+varargout = mirfunction(@mireventdensity,x,varargin,nargout,specif,@init,@main);
+
+
+function [x type] = init(x,option)
+if not(isamir(x,'mirenvelope'))
+    if option.frame.length.val
+        x = mironsets(x,'Klapuri99', 'Frame',option.frame.length.val,...
+                                              option.frame.length.unit,...
+                                              option.frame.hop.val,...
+                                              option.frame.hop.unit);
+    else
+        x = mironsets(x,'Klapuri99');
+    end
+end
+type = 'mirscalar';
+
+
+function e = main(o,option,postoption)
+if iscell(o)
+    o = o{1};
+end
+sr = get(o,'Sampling');
+p = mirpeaks(o); %%%%<<<<<<< MORE OPTIONS HERE
+pv = get(p,'PeakVal');
+v = mircompute(@algo,pv,o,option,sr);
+e = mirscalar(o,'Data',v,'Title','Event density','Unit','per second');
+e = {e o};
+
+
+function e = algo(pv,o,option,sr)
+nc = size(o,2);
+nch = size(o,3);
+e = zeros(1,nc,nch);
+% for i = 1:nch
+%     for j = 1:nc
+%         if option.root
+%             e(1,j,i) = norm(d(:,j,i));
+%         else
+%             disp('do the calc...')
+%  %           e(1,j,i) = d(:,j,i)'*d(:,j,i);
+%             %tmp = mironsets(d,'Filterbank',10,'Contrast',0.1); % Change by TE, was only FB=20, no other params
+%             e2 = mirpeaks(e)
+%             [o1,o2] = mirgetdata(e);
+%             e(1,j,i) = length(o2)/mirgetdata(mirlength(d)); 
+%         end
+%     end
+% end
+for i = 1:nch
+    for j = 1:nc
+        e(1,j,i) = length(pv{1,j,i});
+        if strcmpi(option.normal,'Option1')
+            e(1,j,i) = e(1,j,i) *sr/size(o,1);
+        elseif strcmpi(option.normal,'Option2')
+            pvs = pv{1};
+            high_pvs = length(find(mean(pvs)>pvs));
+            e(1,j,i) = high_pvs(1,j,i) *sr/size(o,1); % only those which are larger than mean
+        end
+    end
+end
+
+
+
+%function [y orig] = eachchunk(orig,option,missing,postchunk)
+%y = mireventdensity(orig,option);
+
+
+%function y = combinechunk(old,new)
+%do = mirgetdata(old);
+%dn = mirgetdata(new);
+%y = set(old,'ChunkData',do+dn);