Mercurial > hg > camir-aes2014
diff toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/SeneffEarSetup.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/SeneffEarSetup.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,224 @@ +function [SeneffPreemphasis, SeneffFilterBank, SeneffForward, SeneffBackward] ... + = SeneffEarSetup(fs) + +% This m-function is based on data from the following paper: +% Benjamin D. Bryant and John D. Gowdy, "Simulation of Stages +% I and II of Seneff's Auditory Model (SAM) Using Matlab", and +% published in the Proceedings of the 1993 Matlab User's Group +% Conference. +% Thanks to Benjamin Bryant for supplying us with his filter +% coefficients and the initial organization of this implementation. + +% (c) 1998 Interval Research Corporation + +% Set the following variable to a non-zero value to see a summary +% of the filter bank's behaviour. +plotTests = 0; + +% The following values were taken from Figure 2 of Bryant's paper. +PreemphasisRTheta = [0.86 3.1148863;0.99 0; 0.5 0; 0.95 3.14159]; + +% The following values were taken from Table 1 of Bryant's paper. +% They represent the cascade zeros (R-z and Theta-z), and the +% second order poles (radius and theta) and zeros (radius and theta/2). +% +% R-z Theta-z Radius Theta R-z2 +FilterBankRTheta = [ + 0 3.14159 0.740055 2.633909 0.8 + 0.86 2.997077 0.753637 2.178169 0.8 + 0.86 2.879267 0.775569 1.856744 0.8 + 0.86 2.761458 0.798336 1.617919 0.8 + 0.86 2.643648 0.819169 1.433496 0.8 + 0.86 2.525839 0.837158 1.286795 0.8 + 0.8 2.964876 0.852598 1.167321 0.8 + 0.86 2.408029 0.865429 1.068141 0.8 + 0.86 2.29022 0.876208 0.984489 0.8 + 0.86 2.17241 0.885329 0.912985 0.8 + 0.86 2.054601 0.893116 0.851162 0.8 + 0.86 1.936791 0.899823 0.797179 0.8 + 0.8 2.788161 0.906118 0.749633 0.8 + 0.86 1.818981 0.911236 0.70744 0.8 + 0.86 1.701172 0.915747 0.669742 0.8 + 0.86 1.583362 0.919753 0.635858 0.8 + 0.86 1.465552 0.923335 0.605237 0.8 + 0.86 1.347743 0.926565 0.57743 0.8 + 0.8 2.611447 0.929914 0.552065 0.8 + 0.86 1.229933 0.932576 0.528834 0.8 + 0.86 1.112123 0.944589 0.487783 0.75 + 0.86 0.994314 0.957206 0.452645 0.660714 + 0.86 0.876504 0.956548 0.42223 0.672143 + 0.86 0.758694 0.956653 0.395644 0.682143 + 0.8 2.434732 0.956518 0.372208 0.690966 + 0.86 0.640885 0.956676 0.351393 0.69881 + 0.86 0.523075 0.956741 0.316044 0.712143 + 0.8 2.258018 0.956481 0.287157 0.723052 + 0.8 2.081304 0.956445 0.263108 0.732143 + 0.8 1.904589 0.956481 0.242776 0.739835 + 0.86 0.405265 0.958259 0.217558 0.749384 + 0.8 1.727875 0.963083 0.197086 0.757143 + 0.8 1.55116 0.969757 0.175115 0.769048 + 0.8 1.374446 0.97003 0.153697 0.780662 + 0.8 1.197732 0.970382 0.134026 0.791337 + 0.8 1.021017 0.970721 0.118819 0.799596 + 0.8 1.5 0.970985 0.106711 0.8 + 0.8 1.2 0.971222 0.096843 0.8 + 0.8 1 0.97144 0.088645 0.8 + 0.8 0.9 0.971645 0.081727 0.8]; + +% Let's plot the cascade zero locations and the locations of the +% pole and zeros in the resonator. +if plotTests + clf; + subplot(3,3,1); + plot(FilterBankRTheta(:,1).*exp(i*FilterBankRTheta(:,2))) + axis([-1 1 0 1]) + title('Cascade Zero Locations') + + subplot(3,3,2); + plot([FilterBankRTheta(:,3).*exp(i*FilterBankRTheta(:,4)) ... + FilterBankRTheta(:,5).*exp(i*FilterBankRTheta(:,4)/2)],'+') + title('Resonator Pole/Zero') + drawnow; +end + +% Convert r-theta form, first into a list of roots, then a polynomial +roots=exp(i*PreemphasisRTheta(:,2)).*PreemphasisRTheta(:,1); +SeneffPreemphasis=real(poly([roots;conj(roots)])); + +% Plot the preemphasis filter response, if desired +if plotTests + subplot(3,3,3); + freqScale=(0:255)/256*8000; + freqresp = FreqResp(SeneffPreemphasis,[1], freqScale, 16000); + semilogx(freqScale,freqresp) + title('Preemphasis Response'); + axis([100 10000 -60 20]) + drawnow; +end + +% Now figure out the second order sections that make up the main +% filter bank cascade. We put the zeros into the numerator (b's) +% and there are no poles. Just to keep things simpler, we adjust +% the gain of each filter to keep it unity gain at DC. +[channels,width] = size(FilterBankRTheta); +roots=exp(i*FilterBankRTheta(:,2)).*FilterBankRTheta(:,1); +SeneffFilterBank = zeros(channels,5); +for j=1:channels + SeneffFilterBank(j,1:3) = poly([roots(j) conj(roots(j))]); + SeneffFilterBank(j,1:3) = SeneffFilterBank(j,1:3)/sum(SeneffFilterBank(j,1:3)); +end + +% Plot the cascade zero responses, if desired. +if plotTests + subplot(3,3,4); + y=soscascade([1 zeros(1,511)],SeneffFilterBank); + freqresp=20*log10(abs(fft(y(1:5:40,:)'))); + freqScale=(0:511)/512*16000; + semilogx(freqScale(1:256),freqresp(1:256,:)) + axis([100 10000 -150 0]); + title('Cascade Response'); + drawnow; +end + +% Now figure out the resonating filters. Each of these resonators +% is a double pole-zero pair. +zlocs = FilterBankRTheta(:,5).*exp(i*FilterBankRTheta(:,4)/2); +plocs = FilterBankRTheta(:,3).*exp(i*FilterBankRTheta(:,4)); +SeneffForward = zeros(5,channels); +SeneffBackward = zeros(5,channels); + +for j=1:channels + SeneffForward(:,j) = real(poly([zlocs(j) conj(zlocs(j)) ... + zlocs(j) conj(zlocs(j))]))'; + SeneffBackward(:,j) = real(poly([plocs(j) conj(plocs(j)) ... + plocs(j) conj(plocs(j))]))'; +end + +% Now plot the frequency response of just the resonating filters. +% These are all bandpass filters. +if plotTests + subplot(3,3,5); + impulse = [1 zeros(1,255)]; + y=zeros(256,channels); + for j=1:40 + y(:,j) = filter(SeneffForward(:,j),SeneffBackward(:,j),impulse)'; + end + freqresp=20*log10(abs(fft(y(:,1:5:40)))); + freqScale=(0:255)/256*16000; + semilogx(freqScale(1:128),freqresp(1:128,:)) + axis([100 10000 -30 40]); + title('Resonators Response') + drawnow; +end + +% The plot below shows the overall response of the preemphasis filters +% along with the just-designed cascade of zeros. +if plotTests + subplot(3,3,6); + impulse = [1 zeros(1,511)]; + y=soscascade(filter(SeneffPreemphasis, [1], impulse), ... + SeneffFilterBank); + freqresp=20*log10(abs(fft(y(1:5:40,:)'))); + freqScale=(0:511)/512*16000; + semilogx(freqScale(1:256),freqresp(1:256,:)) + axis([100 10000 -100 25]); + title('Preemphasis+Cascade'); + drawnow; +end + +% Now we need to normalize the gain of each channel. We run an impulse +% through the preemphasis filter, and then through the cascade of zeros. +% Finally, we run it through each of the resonator filters. +impulse = [1 zeros(1,255)]; +y=soscascade(filter(SeneffPreemphasis, [1], impulse), ... + SeneffFilterBank); +for j=1:channels + y(j,:) = filter(SeneffForward(:,j),SeneffBackward(:,j),y(j,:)); +end + +% Now we have impulse responses from each filter. We can find the FFT +% and then find the gain peak. We divide each forward polynomial by the +% maximum gain (to normalize) and then multiply by the desired low +% frequency roll-off. The Bryant paper says that the last 24 channels +% should be cut at 6dB per octave and that this occurs at 1600 Hz, but +% it looks to me like the gain change happens at 3200 Hz. +freqresp=abs(fft(y')); +gain = ones(1,channels)./max(freqresp); +cfs = FilterBankRTheta(:,4)/pi*fs/2; +rolloff = min(cfs/1600,1); + +for j=1:channels + SeneffForward(:,j)=SeneffForward(:,j)*gain(j)*rolloff(j); +end + +% All Done. The figure below should match Figure 3 of Bryant's paper. +if plotTests + subplot(3,3,8); + impulse = [1 zeros(1,511)]; + y=soscascade(filter(SeneffPreemphasis, [1], impulse), ... + SeneffFilterBank); + for j=1:channels + y(j,:) = filter(SeneffForward(:,j),SeneffBackward(:,j),y(j,:)); + end + + freqresp=20*log10(abs(fft(y(1:5:40,:)'))); + freqScale=(0:511)/512*16000; + plot(freqScale(1:256),freqresp(1:256,:)) + axis([100 10000 -120 0]); + title('Magnitude Response vs. Linear Frequency'); + drawnow; +end + + +function mag=FreqResp(b,a,f,fs) +cf = exp(i*2*pi*f/fs); +num = 0; +for i=1:length(b) + num = num + b(end-i+1)*cf.^i; +end + +denom = 0; +for i=1:length(a) + denom = denom + a(end-i+1)*cf.^i; +end +mag = 20*log10(abs(num./denom));