Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/rbfjacob.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/rbfjacob.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,49 @@ +function jac = rbfjacob(net, x) +%RBFJACOB Evaluate derivatives of RBF network outputs with respect to inputs. +% +% Description +% G = RBFJACOB(NET, X) takes a network data structure NET and a matrix +% of input vectors X and returns a three-index matrix G whose I, J, K +% element contains the derivative of network output K with respect to +% input parameter J for input pattern I. +% +% See also +% RBF, RBFGRAD, RBFBKP +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Check arguments for consistency +errstring = consist(net, 'rbf', x); +if ~isempty(errstring); + error(errstring); +end + +if ~strcmp(net.outfn, 'linear') + error('Function only implemented for linear outputs') +end + +[y, z, n2] = rbffwd(net, x); + +ndata = size(x, 1); +jac = zeros(ndata, net.nin, net.nout); +Psi = zeros(net.nin, net.nhidden); +% Calculate derivative of activations wrt n2 +switch net.actfn +case 'gaussian' + dz = -z./(ones(ndata, 1)*net.wi); +case 'tps' + dz = 2*(1 + log(n2+(n2==0))); +case 'r4logr' + dz = 2*(n2.*(1+2.*log(n2+(n2==0)))); +otherwise + error(['Unknown activation function ', net.actfn]); +end + +% Ignore biases as they cannot affect Jacobian +for n = 1:ndata + Psi = (ones(net.nin, 1)*dz(n, :)).* ... + (x(n, :)'*ones(1, net.nhidden) - net.c'); + % Now compute the Jacobian + jac(n, :, :) = Psi * net.w2; +end \ No newline at end of file