Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/rbfgrad.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/rbfgrad.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,65 @@ +function [g, gdata, gprior] = rbfgrad(net, x, t) +%RBFGRAD Evaluate gradient of error function for RBF network. +% +% Description +% G = RBFGRAD(NET, X, T) takes a network data structure NET together +% with a matrix X of input vectors and a matrix T of target vectors, +% and evaluates the gradient G of the error function with respect to +% the network weights (i.e. including the hidden unit parameters). The +% error function is sum of squares. Each row of X corresponds to one +% input vector and each row of T contains the corresponding target +% vector. If the output function is 'NEUROSCALE' then the gradient is +% only computed for the output layer weights and biases. +% +% [G, GDATA, GPRIOR] = RBFGRAD(NET, X, T) also returns separately the +% data and prior contributions to the gradient. In the case of multiple +% groups in the prior, GPRIOR is a matrix with a row for each group and +% a column for each weight parameter. +% +% See also +% RBF, RBFFWD, RBFERR, RBFPAK, RBFUNPAK, RBFBKP +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Check arguments for consistency +switch net.outfn +case 'linear' + errstring = consist(net, 'rbf', x, t); +case 'neuroscale' + errstring = consist(net, 'rbf', x); +otherwise + error(['Unknown output function ', net.outfn]); +end +if ~isempty(errstring); + error(errstring); +end + +ndata = size(x, 1); + +[y, z, n2] = rbffwd(net, x); + +switch net.outfn +case 'linear' + + % Sum squared error at output units + delout = y - t; + + gdata = rbfbkp(net, x, z, n2, delout); + [g, gdata, gprior] = gbayes(net, gdata); + +case 'neuroscale' + % Compute the error gradient with respect to outputs + y_dist = sqrt(dist2(y, y)); + D = (t - y_dist)./(y_dist+diag(ones(ndata, 1))); + temp = y'; + gradient = 2.*sum(kron(D, ones(1, net.nout)) .* ... + (repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1); + gradient = (reshape(gradient, net.nout, ndata))'; + % Compute the error gradient + gdata = rbfbkp(net, x, z, n2, gradient); + [g, gdata, gprior] = gbayes(net, gdata); +otherwise + error(['Unknown output function ', net.outfn]); +end +