Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/quasinew.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/quasinew.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,176 @@ +function [x, options, flog, pointlog] = quasinew(f, x, options, gradf, ... + varargin) +%QUASINEW Quasi-Newton optimization. +% +% Description +% [X, OPTIONS, FLOG, POINTLOG] = QUASINEW(F, X, OPTIONS, GRADF) uses a +% quasi-Newton algorithm to find a local minimum of the function F(X) +% whose gradient is given by GRADF(X). Here X is a row vector and F +% returns a scalar value. The point at which F has a local minimum is +% returned as X. The function value at that point is returned in +% OPTIONS(8). A log of the function values after each cycle is +% (optionally) returned in FLOG, and a log of the points visited is +% (optionally) returned in POINTLOG. +% +% QUASINEW(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional +% arguments to be passed to F() and GRADF(). +% +% The optional parameters have the following interpretations. +% +% OPTIONS(1) is set to 1 to display error values; also logs error +% values in the return argument ERRLOG, and the points visited in the +% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only +% warning messages are displayed. If OPTIONS(1) is -1, then nothing is +% displayed. +% +% OPTIONS(2) is a measure of the absolute precision required for the +% value of X at the solution. If the absolute difference between the +% values of X between two successive steps is less than OPTIONS(2), +% then this condition is satisfied. +% +% OPTIONS(3) is a measure of the precision required of the objective +% function at the solution. If the absolute difference between the +% objective function values between two successive steps is less than +% OPTIONS(3), then this condition is satisfied. Both this and the +% previous condition must be satisfied for termination. +% +% OPTIONS(9) should be set to 1 to check the user defined gradient +% function. +% +% OPTIONS(10) returns the total number of function evaluations +% (including those in any line searches). +% +% OPTIONS(11) returns the total number of gradient evaluations. +% +% OPTIONS(14) is the maximum number of iterations; default 100. +% +% OPTIONS(15) is the precision in parameter space of the line search; +% default 1E-2. +% +% See also +% CONJGRAD, GRADDESC, LINEMIN, MINBRACK, SCG +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Set up the options. +if length(options) < 18 + error('Options vector too short') +end + +if(options(14)) + niters = options(14); +else + niters = 100; +end + +% Set up options for line search +line_options = foptions; +% Don't need a very precise line search +if options(15) > 0 + line_options(2) = options(15); +else + line_options(2) = 1e-2; % Default +end +% Minimal fractional change in f from Newton step: otherwise do a line search +min_frac_change = 1e-4; + +display = options(1); + +% Next two lines allow quasinew to work with expression strings +f = fcnchk(f, length(varargin)); +gradf = fcnchk(gradf, length(varargin)); + +% Check gradients +if (options(9)) + feval('gradchek', x, f, gradf, varargin{:}); +end + +nparams = length(x); +fnew = feval(f, x, varargin{:}); +options(10) = options(10) + 1; +gradnew = feval(gradf, x, varargin{:}); +options(11) = options(11) + 1; +p = -gradnew; % Search direction +hessinv = eye(nparams); % Initialise inverse Hessian to be identity matrix +j = 1; +if nargout >= 3 + flog(j, :) = fnew; + if nargout == 4 + pointlog(j, :) = x; + end +end + +while (j <= niters) + + xold = x; + fold = fnew; + gradold = gradnew; + + x = xold + p; + fnew = feval(f, x, varargin{:}); + options(10) = options(10) + 1; + + % This shouldn't occur, but rest of code depends on sd being downhill + if (gradnew*p' >= 0) + p = -p; + if options(1) >= 0 + warning('search direction uphill in quasinew'); + end + end + + % Does the Newton step reduce the function value sufficiently? + if (fnew >= fold + min_frac_change * (gradnew*p')) + % No it doesn't + % Minimize along current search direction: must be less than Newton step + [lmin, line_options] = feval('linemin', f, xold, p, fold, ... + line_options, varargin{:}); + options(10) = options(10) + line_options(10); + options(11) = options(11) + line_options(11); + % Correct x and fnew to be the actual search point we have found + x = xold + lmin * p; + p = x - xold; + fnew = line_options(8); + end + + % Check for termination + if (max(abs(x - xold)) < options(2) & max(abs(fnew - fold)) < options(3)) + options(8) = fnew; + return; + end + gradnew = feval(gradf, x, varargin{:}); + options(11) = options(11) + 1; + v = gradnew - gradold; + vdotp = v*p'; + + % Skip update to inverse Hessian if fac not sufficiently positive + if (vdotp*vdotp > eps*sum(v.^2)*sum(p.^2)) + Gv = (hessinv*v')'; + vGv = sum(v.*Gv); + u = p./vdotp - Gv./vGv; + % Use BFGS update rule + hessinv = hessinv + (p'*p)/vdotp - (Gv'*Gv)/vGv + vGv*(u'*u); + end + + p = -(hessinv * gradnew')'; + + if (display > 0) + fprintf(1, 'Cycle %4d Function %11.6f\n', j, fnew); + end + + j = j + 1; + if nargout >= 3 + flog(j, :) = fnew; + if nargout == 4 + pointlog(j, :) = x; + end + end +end + +% If we get here, then we haven't terminated in the given number of +% iterations. + +options(8) = fold; +if (options(1) >= 0) + disp(maxitmess); +end