diff toolboxes/FullBNT-1.0.7/netlab3.3/quasinew.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/netlab3.3/quasinew.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,176 @@
+function [x, options, flog, pointlog] = quasinew(f, x, options, gradf, ...
+                                    varargin)
+%QUASINEW Quasi-Newton optimization.
+%
+%	Description
+%	[X, OPTIONS, FLOG, POINTLOG] = QUASINEW(F, X, OPTIONS, GRADF)  uses a
+%	quasi-Newton algorithm to find a local minimum of the function F(X)
+%	whose gradient is given by GRADF(X).  Here X is a row vector and F
+%	returns a scalar value.   The point at which F has a local minimum is
+%	returned as X.  The function value at that point is returned in
+%	OPTIONS(8). A log of the function values after each cycle is
+%	(optionally) returned in FLOG, and a log of the points visited is
+%	(optionally) returned in POINTLOG.
+%
+%	QUASINEW(F, X, OPTIONS, GRADF, P1, P2, ...) allows  additional
+%	arguments to be passed to F() and GRADF().
+%
+%	The optional parameters have the following interpretations.
+%
+%	OPTIONS(1) is set to 1 to display error values; also logs error
+%	values in the return argument ERRLOG, and the points visited in the
+%	return argument POINTSLOG.  If OPTIONS(1) is set to 0, then only
+%	warning messages are displayed.  If OPTIONS(1) is -1, then nothing is
+%	displayed.
+%
+%	OPTIONS(2) is a measure of the absolute precision required for the
+%	value of X at the solution.  If the absolute difference between the
+%	values of X between two successive steps is less than OPTIONS(2),
+%	then this condition is satisfied.
+%
+%	OPTIONS(3) is a measure of the precision required of the objective
+%	function at the solution.  If the absolute difference between the
+%	objective function values between two successive steps is less than
+%	OPTIONS(3), then this condition is satisfied. Both this and the
+%	previous condition must be satisfied for termination.
+%
+%	OPTIONS(9) should be set to 1 to check the user defined gradient
+%	function.
+%
+%	OPTIONS(10) returns the total number of function evaluations
+%	(including those in any line searches).
+%
+%	OPTIONS(11) returns the total number of gradient evaluations.
+%
+%	OPTIONS(14) is the maximum number of iterations; default 100.
+%
+%	OPTIONS(15) is the precision in parameter space of the line search;
+%	default 1E-2.
+%
+%	See also
+%	CONJGRAD, GRADDESC, LINEMIN, MINBRACK, SCG
+%
+
+%	Copyright (c) Ian T Nabney (1996-2001)
+
+%  Set up the options.
+if length(options) < 18
+  error('Options vector too short')
+end
+
+if(options(14))
+  niters = options(14);
+else
+  niters = 100;
+end
+
+% Set up options for line search
+line_options = foptions;
+% Don't need a very precise line search
+if options(15) > 0
+  line_options(2) = options(15);
+else
+  line_options(2) = 1e-2;  % Default
+end
+% Minimal fractional change in f from Newton step: otherwise do a line search
+min_frac_change = 1e-4;	
+
+display = options(1);
+
+% Next two lines allow quasinew to work with expression strings
+f = fcnchk(f, length(varargin));
+gradf = fcnchk(gradf, length(varargin));
+
+% Check gradients
+if (options(9))
+  feval('gradchek', x, f, gradf, varargin{:});
+end
+
+nparams = length(x);
+fnew = feval(f, x, varargin{:});
+options(10) = options(10) + 1;
+gradnew = feval(gradf, x, varargin{:});
+options(11) = options(11) + 1;
+p = -gradnew;		% Search direction
+hessinv = eye(nparams); % Initialise inverse Hessian to be identity matrix
+j = 1;
+if nargout >= 3
+  flog(j, :) = fnew;
+  if nargout == 4
+    pointlog(j, :) = x;
+  end
+end
+
+while (j <= niters)
+
+  xold = x;
+  fold = fnew;
+  gradold = gradnew;
+
+  x = xold + p;
+  fnew = feval(f, x, varargin{:});
+  options(10) = options(10) + 1;
+
+  % This shouldn't occur, but rest of code depends on sd being downhill
+  if (gradnew*p' >= 0)
+    p = -p;
+    if options(1) >= 0
+      warning('search direction uphill in quasinew');
+    end
+  end
+
+  % Does the Newton step reduce the function value sufficiently?
+  if (fnew >= fold + min_frac_change * (gradnew*p'))
+    % No it doesn't
+    % Minimize along current search direction: must be less than Newton step
+    [lmin, line_options] = feval('linemin', f, xold, p, fold, ...
+      line_options, varargin{:});
+    options(10) = options(10) + line_options(10);
+    options(11) = options(11) + line_options(11);
+    % Correct x and fnew to be the actual search point we have found
+    x = xold + lmin * p;
+    p = x - xold;
+    fnew = line_options(8);
+  end
+
+  % Check for termination
+  if (max(abs(x - xold)) < options(2) & max(abs(fnew - fold)) < options(3))
+    options(8) = fnew;
+    return;
+  end
+  gradnew = feval(gradf, x, varargin{:});
+  options(11) = options(11) + 1;
+  v = gradnew - gradold;
+  vdotp = v*p';
+
+  % Skip update to inverse Hessian if fac not sufficiently positive
+  if (vdotp*vdotp > eps*sum(v.^2)*sum(p.^2)) 
+    Gv = (hessinv*v')';
+    vGv = sum(v.*Gv);
+    u = p./vdotp - Gv./vGv;
+    % Use BFGS update rule
+    hessinv = hessinv + (p'*p)/vdotp - (Gv'*Gv)/vGv + vGv*(u'*u);
+  end
+
+  p = -(hessinv * gradnew')';
+
+  if (display > 0)
+    fprintf(1, 'Cycle %4d  Function %11.6f\n', j, fnew);
+  end
+
+  j = j + 1;
+  if nargout >= 3
+    flog(j, :) = fnew;
+    if nargout == 4
+      pointlog(j, :) = x;
+    end
+  end
+end
+
+% If we get here, then we haven't terminated in the given number of 
+% iterations.
+
+options(8) = fold;
+if (options(1) >= 0)
+  disp(maxitmess);
+end