diff toolboxes/FullBNT-1.0.7/netlab3.3/olgd.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/netlab3.3/olgd.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,181 @@
+function [net, options, errlog, pointlog] = olgd(net, options, x, t)
+%OLGD	On-line gradient descent optimization.
+%
+%	Description
+%	[NET, OPTIONS, ERRLOG, POINTLOG] = OLGD(NET, OPTIONS, X, T) uses  on-
+%	line gradient descent to find a local minimum of the error function
+%	for the network NET computed on the input data X and target values T.
+%	A log of the error values after each cycle is (optionally) returned
+%	in ERRLOG, and a log of the points visited is (optionally) returned
+%	in POINTLOG. Because the gradient is computed on-line (i.e. after
+%	each pattern) this can be quite inefficient in Matlab.
+%
+%	The error function value at final weight vector is returned in
+%	OPTIONS(8).
+%
+%	The optional parameters have the following interpretations.
+%
+%	OPTIONS(1) is set to 1 to display error values; also logs error
+%	values in the return argument ERRLOG, and the points visited in the
+%	return argument POINTSLOG.  If OPTIONS(1) is set to 0, then only
+%	warning messages are displayed.  If OPTIONS(1) is -1, then nothing is
+%	displayed.
+%
+%	OPTIONS(2) is the precision required for the value of X at the
+%	solution. If the absolute difference between the values of X between
+%	two successive steps is less than OPTIONS(2), then this condition is
+%	satisfied.
+%
+%	OPTIONS(3) is the precision required of the objective function at the
+%	solution.  If the absolute difference between the error functions
+%	between two successive steps is less than OPTIONS(3), then this
+%	condition is satisfied. Both this and the previous condition must be
+%	satisfied for termination. Note that testing the function value at
+%	each iteration roughly halves the speed of the algorithm.
+%
+%	OPTIONS(5) determines whether the patterns are sampled randomly with
+%	replacement. If it is 0 (the default), then patterns are sampled in
+%	order.
+%
+%	OPTIONS(6) determines if the learning rate decays.  If it is 1 then
+%	the learning rate decays at a rate of 1/T.  If it is 0 (the default)
+%	then the learning rate is constant.
+%
+%	OPTIONS(9) should be set to 1 to check the user defined gradient
+%	function.
+%
+%	OPTIONS(10) returns the total number of function evaluations
+%	(including those in any line searches).
+%
+%	OPTIONS(11) returns the total number of gradient evaluations.
+%
+%	OPTIONS(14) is the maximum number of iterations (passes through the
+%	complete pattern set); default 100.
+%
+%	OPTIONS(17) is the momentum; default 0.5.
+%
+%	OPTIONS(18) is the learning rate; default 0.01.
+%
+%	See also
+%	GRADDESC
+%
+
+%	Copyright (c) Ian T Nabney (1996-2001)
+
+%  Set up the options.
+if length(options) < 18
+  error('Options vector too short')
+end
+
+if (options(14))
+  niters = options(14);
+else
+  niters = 100;
+end
+
+% Learning rate: must be positive
+if (options(18) > 0)
+  eta = options(18);
+else
+  eta = 0.01;
+end
+% Save initial learning rate for annealing
+lr = eta;
+% Momentum term: allow zero momentum
+if (options(17) >= 0)
+  mu = options(17);
+else
+  mu = 0.5;
+end
+
+pakstr = [net.type, 'pak'];
+unpakstr = [net.type, 'unpak'];
+
+% Extract initial weights from the network
+w = feval(pakstr, net);
+
+display = options(1);
+
+% Work out if we need to compute f at each iteration.
+% Needed if display results or if termination
+% criterion requires it.
+fcneval = (display | options(3));
+
+%  Check gradients
+if (options(9))
+  feval('gradchek', w, 'neterr', 'netgrad', net, x, t);
+end
+
+dwold = zeros(1, length(w));
+fold = 0; % Must be initialised so that termination test can be performed
+ndata = size(x, 1);
+
+if fcneval
+  fnew = neterr(w, net, x, t);
+  options(10) = options(10) + 1;
+  fold = fnew;
+end
+
+j = 1;
+if nargout >= 3
+  errlog(j, :) = fnew;
+  if nargout == 4
+    pointlog(j, :) = w;
+  end
+end
+
+%  Main optimization loop.
+while j <= niters
+  wold = w;
+  if options(5)
+    % Randomise order of pattern presentation: with replacement
+    pnum = ceil(rand(ndata, 1).*ndata);
+  else
+    pnum = 1:ndata;
+  end
+  for k = 1:ndata
+    grad = netgrad(w, net, x(pnum(k),:), t(pnum(k),:));
+    if options(6)
+      % Let learning rate decrease as 1/t
+      lr = eta/((j-1)*ndata + k);
+    end
+    dw = mu*dwold - lr*grad;
+    w =  w + dw;
+    dwold = dw;
+  end
+  options(11) = options(11) + 1;  % Increment gradient evaluation count
+  if fcneval
+    fold = fnew;
+    fnew = neterr(w, net, x, t);
+    options(10) = options(10) + 1;
+  end
+  if display
+    fprintf(1, 'Iteration  %5d  Error %11.8f\n', j, fnew);
+  end
+  j = j + 1;
+  if nargout >= 3
+    errlog(j) = fnew;
+    if nargout == 4
+      pointlog(j, :) = w;
+    end
+  end
+  if (max(abs(w - wold)) < options(2) & abs(fnew - fold) < options(3))
+    % Termination criteria are met
+    options(8) = fnew;
+    net = feval(unpakstr, net, w);
+    return;
+  end
+end
+
+if fcneval
+  options(8) = fnew;
+else
+  % Return error on entire dataset
+  options(8) = neterr(w, net, x, t);
+  options(10) = options(10) + 1;
+end
+if (options(1) >= 0)
+  disp(maxitmess);
+end
+
+net = feval(unpakstr, net, w);
\ No newline at end of file