Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/gtmem.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/gtmem.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,135 @@ +function [net, options, errlog] = gtmem(net, t, options) +%GTMEM EM algorithm for Generative Topographic Mapping. +% +% Description +% [NET, OPTIONS, ERRLOG] = GTMEM(NET, T, OPTIONS) uses the Expectation +% Maximization algorithm to estimate the parameters of a GTM defined by +% a data structure NET. The matrix T represents the data whose +% expectation is maximized, with each row corresponding to a vector. +% It is assumed that the latent data NET.X has been set following a +% call to GTMINIT, for example. The optional parameters have the +% following interpretations. +% +% OPTIONS(1) is set to 1 to display error values; also logs error +% values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then +% only warning messages are displayed. If OPTIONS(1) is -1, then +% nothing is displayed. +% +% OPTIONS(3) is a measure of the absolute precision required of the +% error function at the solution. If the change in log likelihood +% between two steps of the EM algorithm is less than this value, then +% the function terminates. +% +% OPTIONS(14) is the maximum number of iterations; default 100. +% +% The optional return value OPTIONS contains the final error value +% (i.e. data log likelihood) in OPTIONS(8). +% +% See also +% GTM, GTMINIT +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Check that inputs are consistent +errstring = consist(net, 'gtm', t); +if ~isempty(errstring) + error(errstring); +end + +% Sort out the options +if (options(14)) + niters = options(14); +else + niters = 100; +end + +display = options(1); +store = 0; +if (nargout > 2) + store = 1; % Store the error values to return them + errlog = zeros(1, niters); +end +test = 0; +if options(3) > 0.0 + test = 1; % Test log likelihood for termination +end + +% Calculate various quantities that remain constant during training +[ndata, tdim] = size(t); +ND = ndata*tdim; +[net.gmmnet.centres, Phi] = rbffwd(net.rbfnet, net.X); +Phi = [Phi ones(size(net.X, 1), 1)]; +PhiT = Phi'; +[K, Mplus1] = size(Phi); + +A = zeros(Mplus1, Mplus1); +cholDcmp = zeros(Mplus1, Mplus1); +% Use a sparse representation for the weight regularizing matrix. +if (net.rbfnet.alpha > 0) + Alpha = net.rbfnet.alpha*speye(Mplus1); + Alpha(Mplus1, Mplus1) = 0; +end + +for n = 1:niters + % Calculate responsibilities + [R, act] = gtmpost(net, t); + % Calculate error value if needed + if (display | store | test) + prob = act*(net.gmmnet.priors)'; + % Error value is negative log likelihood of data + e = - sum(log(max(prob,eps))); + if store + errlog(n) = e; + end + if display > 0 + fprintf(1, 'Cycle %4d Error %11.6f\n', n, e); + end + if test + if (n > 1 & abs(e - eold) < options(3)) + options(8) = e; + return; + else + eold = e; + end + end + end + + % Calculate matrix be inverted (Phi'*G*Phi + alpha*I in the papers). + % Sparse representation of G normally executes faster and saves + % memory + if (net.rbfnet.alpha > 0) + A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi + ... + (Alpha.*net.gmmnet.covars(1))); + else + A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi); + end + % A is a symmetric matrix likely to be positive definite, so try + % fast Cholesky decomposition to calculate W, otherwise use SVD. + % (PhiT*(R*t)) is computed right-to-left, as R + % and t are normally (much) larger than PhiT. + [cholDcmp singular] = chol(A); + if (singular) + if (display) + fprintf(1, ... + 'gtmem: Warning -- M-Step matrix singular, using pinv.\n'); + end + W = pinv(A)*(PhiT*(R'*t)); + else + W = cholDcmp \ (cholDcmp' \ (PhiT*(R'*t))); + end + % Put new weights into network to calculate responsibilities + % net.rbfnet = netunpak(net.rbfnet, W); + net.rbfnet.w2 = W(1:net.rbfnet.nhidden, :); + net.rbfnet.b2 = W(net.rbfnet.nhidden+1, :); + % Calculate new distances + d = dist2(t, Phi*W); + + % Calculate new value for beta + net.gmmnet.covars = ones(1, net.gmmnet.ncentres)*(sum(sum(d.*R))/ND); +end + +options(8) = -sum(log(gtmprob(net, t))); +if (display >= 0) + disp(maxitmess); +end